Data visualization
Machine learning
Software
Reproducibility
Flexibility
Automation
Reproducibility
Repurposed
Often messy
Data about people
Significant ethical and practical implications
Observations in rows, variables in columns, datatypes in tables
Pandas
U Chicago data maturity framework
Problem Definition
Data and Technology Readiness
Organizational Readiness
Modular
Hands-on
Time | Topic |
---|---|
9 - 9:50 | Introduction |
9:50 - 10 | Break |
10 - noon | Programming in Python |
noon - 1 | Lunch |
1 - 1:45 | Version control with git |
1:45 - 2 | Break |
2 - 4 | Git (continued) |
Time | Topic |
---|---|
9 - 10:30 | Tabular data in Python |
10:30 - 10:45 | Break |
11 - noon | Tabular data in Python (continued) |
noon - 1 | Lunch |
1 - 1:45 | Data manipulations in Pandas |
1:45 - 2 | Break |
2 - 4 | Data manipulations in Pandas (continued) |
Time | Topic |
---|---|
9 - 10:30 | Statistics in Pandas |
10:30 - 10:45 | Break |
11 - noon | Statistics in Pandas (continued) |
noon - 1 | Lunch |
1 - 2:15 | Data visualization with Matplotlib |
2:15 - 2:30 | Break |
2:30 - 4 | Discussion: next steps |