matplotlib
This module will cover plotting basics using the matplotlib.pyplot
API and plotting with pandas data frames.
The Jupyter Notebook will render plots inline if we ask it to using a “magic” command %matplotlib
.
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
df1 = pd.DataFrame({'time': [0, 1, 2, 3, 4, 5],
'distance': [0, 100, 200, 300, 400, 500]},
index=[0, 1, 2, 3, 4, 5])
df2 = pd.DataFrame({'time': [0, 1, 2, 3, 4, 5],
'distance': [500, 400, 300, 200, 100, 0]},
index=[0, 1, 2, 3, 4, 5])
Plots from data frames are then (fairly) simple to create.
plt.plot()
provides us with a canvas that we can begin adding to!
plt.plot()
plt.plot?
At the minimum you need to fill in some of the parameters that correspond to plt.plot
, like x
and y
, and the line style or marker.
plt.plot(4,5, marker = 'o')
matplotlib.pyplot
can handle pandas data frames directly.
You can use indexing by name directly.
plt.plot(df1['time'],df1['distance'])
or
plt.plot('time', 'distance', data= df1)
You can add multiple plots by adding more plt.plot()
plt.plot('time', 'distance', data= df1)
plt.plot('time', 'distance', data= df2)