
High Variety Cloud Databases

Shrainik Jain, Dominik Moritz, Bill Howe
Computer Science and Engineering Department, University of Washington, Seattle, WA, USA

{shrainik, domoritz, billhowe}@cs.washington.edu

Abstract—Big Data is colloquially described in terms of the
three Vs: Volume, Velocity, and Variety. Volume and velocity
receive a disproportionate amount of research attention, however,
variety is frequently cited by practitioners as the Big Data
problem that “keeps them up at night” — the problem that
resists direct attacks in terms of new algorithms, systems, and
approaches. We find that the cloud-based data management
platform attracts higher variety workloads, therefore motivating
a new classes of High Variety Database Management Systems
(HVDBMS). This work provides an operational model of variety
emphasizing the complexity of user intent as well as the complexity
of the data itself. The proposed model captures intuitive notions
of variety that are distinct from, and broader than, conventional
data integration challenges, establishes criteria for a “High
Variety benchmark” that can be used to evaluate competing
systems, and motivates new research directions in the design of
HVDBMS.

I. INTRODUCTION

In 2001, Doug Laney characterized Big Data in terms of
challenges associated with volume, velocity, and variety [24].
Since that time, challenges associated with volume and velocity
have received disproportionate attention from the research
community, in part due to the ease with which these challenges
can be translated into system requirements and quantitative
experiments: just measure the runtime, parallel efficiency, and
fault tolerance in response to increasing the number of bytes of
input (volume), the number of bytes of input available per unit
time (velocity), or both. The translation of challenges related
to variety into a coherent systems research agenda, however,
has not been as straightforward. Tasks associated with variety
are only discussed in colloquial terms; high variety seems to
require “munging,” “janitor work” [25] and “jujitsu” [29]. A
common theme is that high variety implies some combination
of diverse users, diverse datasets, or diverse tasks, but a more
detailed treatment is not available.

This immaturity in our understanding is concerning: there is
evidence that variety, rather than volume or velocity, dominates
costs in practice. In an interview study in 2014, Kandel
et al. showed that data integration is a critical obstacle in the
enterprise and that existing tools do not scale to accommodate
the diversity of data [19]. In earlier work, Kandel et al.
argued that data variety causes analysts to spend a significant
amount of time manipulating data and assessing its quality [18].
Stonebraker et al. identified variety as the bottleneck to practical
data science activities and introduced a new data curation
system [33] to partially address the problem.

Cloud-based multi-tenant data management and sharing
services such as Fusion Tables [13], DataHub [4], or SQLShare
[17] provide a natural platform for high-variety data: Users can
upload data with varying degrees of structure and make use
of general services for discovery, querying, sharing, version

control, and more. The utility of these services tends to increase
with the number of users, datasets, and applications the system
attracts. Query recommendation [22], dataset discovery [27],
structure inference [18] and visualization recommendation [36],
[28], [21] services are more effective when the models that
power them can be trained on a large and diverse corpus.
Scheduling and resource allocation algorithms (e.g., [23]) have
more flexibiity when there is a large and diverse queue of
queries and jobs from which to draw. Sharing and collaboration
features [17], [4] become more useful through network effects
when there is a critical mass of users. These systems rely on
diversity in the users, datasets, and workloads rather than just
tolerate it; they are perhaps nascent examples of what Taleb
calls anti-fragile systems [34].

Describing a model that captures the benefits these systems
offer in terms of productivity is a goal of this paper. Variety is
often described in terms of its “non-relationalness,” ignoring
the complexity we see even within rows-and-columns data.
But many cloud-based data sharing systems are “just a bunch
of tables” (JBOT) environments1 — relational databases with
no pre-engineered schema, weak typing (e.g., numeric data
represented as strings), non-semantic or missing column names,
sentinel string values such as “N/A” to indicate missing data,
duplicate rows, and sometimes even significant structural errors
such as rows shifted to the right by one or more columns.
There are no explicit relationships between tables, and logical
entities are scattered across many semi-redundant tables. We
refer to this data as “weakly structured” to distinguish it from
“unstructured” or “semi-structured.” Weakly structured datasets
are quite common, emerging from ad hoc analysis sessions,
automatic extractions from semi-structured sources, or multi-
tenant use of a shared database by non-experts. These scenarios
represent a very common form of high variety, but one that
is largely ignored by systems that focus on graphs, text, or
key-value data.

A number of features have been proposed to assist with
weakly structured data. These features fall roughly into one of
four categories:

• Structure inference features address variety by partially
automating the wrapping, scraping, and parsing steps
required to bring data into a managed environment with
a common data model. Wrangler [18], Open Refine [1],
and Tamr [33] are recent examples of this approach, and
the large body of work on wrapper induction (e.g., [7]) is
relevant as well.

• Schema-on-read features (including aspects of MapReduce,
most NoSQL systems, and various document- and object-
centric databases) purport to address variety by eliminating

1In reference to JBOD — just a bunch of disks

the need to pre-define a schema before ingesting data, in-
stead requiring programmers to apply schema information
implicitly in the code that manipulates the data.

• Pay-as-you-go features help address variety by allowing
users to postpone decisions about structure, relationships,
or semantics until after the data is loaded. Franklin,
Halevy, and Maier adopted this view as part of their
dataspace concept [11]. These systems may use relations,
graphs, attribute-values, or objects as the underlying data
model. Google Fusion Tables [13], Freebase [5], SQLShare
are examples of systems that encourage users to define
relationships, views, types, constraints, and metadata as a
side effect of use rather than pre-defined prior to ingest.

• Data integration features apply schema-matching and
schema-mapping techniques to assist an analyst in identi-
fying relationships between schemas and generating code
to exchange data. The literature in data integration is vast,
but OpenII [32] is a representative open source library.

• Recommendation features use interaction logs and heuris-
tics to simplify query authoring [22] or aplication assem-
bly [36], [28], [21].

What these features and systems have in common is that they
attempt to balance a trade-off among setup costs (e.g., designing
a schema and ingesting data), software development costs
(writing scripts and queries to answer a question), manual effort
(e.g., issuing commands or manipulating a GUI to move data
from one system to another or execute a query), and execution
costs (computational resources required to run the scripts and
compute the answer). These costs motivate a quantitative model
of variety; defining and evaluating such a model is the subject
of this paper.

Our aim in this paper is to describe a model for high-variety
data management systems (HVDMS) by analyzing data and
workloads from three different systems representing a spectrum
of intuitive notions of variety: a scientific database, a multi-
tenant data sharing service called SQLShare, and a conventional
enterprise RDBMS schema as a low-variety control. Our
intuition about high variety in a relational setting comes from
studying multi year user written queries on SQLShare [17]. We
believe that the SQLShare workload is one of the only publicly
available high variety workload. Our central observation is that
high variety is as much a function of user intent as the data
itself. Consider the data on your personal laptop: Certainly
many different formats, usage scenarios, and semantics are
represented. But few if any of your tasks require accessing, let
alone integrating, all of these datasets to answer a particular
question. If one never needs to write a program to manipulate
all the data, its ostensible variety is irrelevant, and new data
management features are not necessarily warranted.

Building on this intuition, we assume users are data
scientists who are provided a corpus of data and one or more
questions to answer. Under these assumptions, we can compare
solutions in terms of the effort required to answer the given
questions over the given corpus. Effort can be modeled in
various ways: the sum of development time and execution time,
lines of code, cyclomatic complexity, etc. We will make this
model precise in §III and show how to use the model in practice
in §IV.

One might argue that this model is too general to be useful.
After all, measuring programmer productivity and designing

tools and languages to maximize these measures has been
the central goal of the software engineering community (and
arguably all of computer science) for decades. But what
has changed in the last five years is that the focus has
shifted from software engineering (with a goal of producing
a long-term solution) to one of ad-hoc data analysis (without
necessarily assuming the solution will be reused in the future).
Code produced to answer a Big Data question will not
necessarily never be used again; it is retained for provenance,
documentation, and reproducibility purposes only, if at all. As
data volumes and complexity increase, data analysis tasks that
were perhaps once simple manual operations (in, say, Microsoft
Excel) or short scripts (in, say, Stata [3]) become significant
engineering challenges involving scripts to scrape data from
the web, queries to extract data from databases, MapReduce
jobs to process unstructured data, and more.

Minimizing the effort required to answer a data science
question, and ensuring that this effort scales sub-linearly as
new data and new questions are presented to the system, is
the fundamental design goal for high-variety data management
systems. In this paper, we make the following contributions:

• We present an operational model of variety and show that
it captures common intuitions.

• We instantiate this model to compare three relational
workloads: an intuitively low-variety enterprise RDBMS
scenario, an intuitively high-variety scientific database,
and an intuitively high-variety web-based data sharing
system with no central schema.

• We propose and evaluate a set of new metrics for
quantifying the complexity of a relational workload and
schema.

• We use these results to inform a set of requirements for
high-variety data management systems, and consider how
they apply to some existing cloud-based JBOT services.

We intend for the model we propose to be used to quantify
variety problems and compare competing solutions. To make
the model concrete, we show how to implement it to compare
relational database applications. In a relational context, we
consider various ways of measuring the complexity of the data
and query workload, show how these metrics relate to effort,
and use the results to derive a set of requirements for systems
purporting to manage variety.

II. RELATED WORK

Previous definitions of Variety fall under one of the
following patterns:

• High variety means anything non-relational [8], [37].
• High variety means relational data integration [1], [18],

[19].
• High variety means anything poorly supported by existing

tools [26].

Laney defined high variety as indicating a “variety of
incompatible formats, non-aligned data structures and incon-
sistent semantics”[24]; this description still seems apt today.
Daveport et al. described variety as unstructured data from
multiple sources[8]. Zikopoulos et al. also emphasize varied
sources — logfiles, sensors, email, documents, videos that
does not lend itself to processing with conventional tools [37].

Madden describes Big Data as being “too big, too fast or
too hard for existing tools to process”[26], which correctly
evokes the effort involved in working with the data. However,
the tools are the actors in this definition rather than the
user, ignoring the programmer’s effort as a component of the
problem. For example, weakly structured relational data might
be considered trivial by this definition since an RDBMS is a
viable solution. Further, this definition is no help in comparing
and contrasting particular tools — once a tool can “process”
the data, the data ceases to be “big” by definition! Structure
extraction tools cast the variety problem as one of parsing
complex formats to produce (weakly) structured data for further
processing. OpenRefine[1] and Wrangler[18] are examples of
this approach. These tools offer no support for working with
multiple datasets or managing complexity once the parsing step
has been completed, which has been shown to be a dominant
cost [19]. Classical data integration techniques are related
to high variety. The central goal of these approaches is to
derive a mediated schema from two or more source schemas,
allowing all source data to be queried uniformly[9]. Tools and
algorithms in this area induce relationships between database
elements (tables, columns, rows) and use these relationships
to rewrite queries or restructure data. Despite a long history
of research (and a detour through XML in the early part
of this century), these techniques do not seem to be widely
used by analysts today, in part because of the assumptions
that the input schemas are carefully engineered, information
carrying structures on which the algorithms can gain purchase.
Dataspaces [11] represented an attempt to capture important
aspects of the high variety problem, but focused heavily on
enterprise settings and managed environments rather than the ad
hoc, one-off analysis that characterizes data science activities
we see in practice. In contrast to existing definitions, we define
high variety in terms of the effort required to answer a set
of questions. Using effort as a guide, we reason about tools,
environments, and solutions in terms of how much they reduce
this effort. User intent is therefore a factor in deciding variety.
We will make this definition precise in the next section.

III. MODELING VARIETY

We have argued that existing definitions of variety are too
informal to use to evaluate and compare systems, approaches,
or applications. We propose a simple operational effort-oriented
model intended to be general enough to capture the diversity
of natural application scenarios, but that can be instantiated in
specific scenarios to provide a quantitative basis of comparison.

We consider four sources of effort in undertaking a data
science problem: 1) the human effort to understand the relevant
data sources, 2) the human effort to write code to extract,
integrate, analyze the data, 3) the human effort to perform
any manual tasks required (e.g., opening files, loading data,
copying and pasting values), and 4) the computational effort
to execute the code. The overall effort (usually interpreted as
time) to solve the problem is the sum of these four sources. The
effort is dependent on the information content of the metadata
(schema, catalog, or other organization of data sources, if one
exists) S, the information content of the data described by
the metadata D, and the information content of the set of
tasks T the users wish to accomplish. The metadata S may
be one or more relational schemas, the directory structures
and file formats holding a set of files, a list of relevant web

resources, some combination of these, or any other information
one must understand to access the data. The complexity of these
inputs drive the effort required to solve the problem. Different
data manipulation environments (SQL + RDBMS, R + files,
Tableau + Spreadsheets, etc.) are associated with different effort
functions over S, D, and T . It is worth noting that the human
effort is subjective and will vary based on programming skills,
however, we are trying to capture the minimum possible effort
required by any user. For coding tasks, effort is a function of
time required to code and number of lines of code.

We propose a Variety Coefficient V with respect to an
environment Env as

VEnv(D,S, T) = Ωcatalog(S) + Ωcode(S, T)+

Ωmanual(D,S, T) + Ωexecution(D,T)
(1)

where Ωcatalog(S) is the effort to comprehend the catalog,
Ωcode(S, T) is the effort to write the code, Ωmanual(D,S, T) is
the effort to perform any manual work, and Ωexecution(D,T) is
the effort to run the code. Together, the sum of these dimensions
determines V .

Different programming environments lead to different effort
functions. Consider the following simple examples:

• An intern is given a CSV file containing all orders from
2014 and is asked to predict the revenue from large orders
next month. The intern opens the data as a spreadsheet,
manually copies all rows for large orders to a new sheet,
writes a formula to extract the month from the order date,
then uses a pivot table to compute the average revenue
by month from large orders.2 Finally, the intern takes
the average of the prior months as a prediction for next
month. The effort to browse the catalog was low; it could
be modeled as the number of columns in the dataset. The
effort to write “code” was also low — just a couple of
formulas. The manual effort required is potentially high,
in some cases scaling linearly with the number of rows.
The execution effort — modeled as wall-clock time — is
essentially zero in this example.

• A statistician is given the same task. She writes a script
in R to process the data and build a simple regression
model that considers seasonalities. The effort to browse
the catalog is the same. The effort to write the code is
relatively high. The manual effort is close to zero — just
opening R. The execution effort depends on the size of
the data, but turns out to be significant in this case.

• The company is acquired. The data sciences team is asked
to repeat the analysis after combining the original data
with a new database with two orders of magnitude more
orders stored in a data warehouse. The task is given to a
database administrator, who loads the original spreadsheet
into a temporary table and writes a series of SQL queries
to compute the result. The effort to browse the catalog
is high — the warehouse schema is complex. The effort
to write the necessary queries is on par with the efforts
to write the original scripts, but the queries now scale to
data volumes that would overwhelm the original R script.

2Not all of these steps are required, but this path represents a typical non-
expert’s approach.

The manual effort includes the time to create a temporary
table, parse and clean the spreadsheet, and ingest the data
— perhaps an hour. The execution time is low — the
database is well-engineered.

We want to use the model to reason about the trade-offs
in these scenarios: Is the effort to write the R script more
than the effort to process the data manually in Excel? The
answer depends on how we instantiate the model with concrete
effort functions. For example, the effort function Ωcode could
be derived in at least three ways:

• We might monitor data scientists to directly measure time
per task.

• We might infer sessions from the query log, and use the
timestamps to estimate development time [22].

• We might estimate effort by the number of lines of code,
the cyclomatic complexity, or other proxy metrics.

In this paper, we consider the use of proxy metrics to
estimate effort. Just as optimizers estimate execution cost from
statistics, we estimate effort costs using analogous statistics.

A. Applying the Model

In this section, we explain this model with the help of four
illustrative examples and show how they affect the different
components of the Variety Coefficient V . For each example,
we give an example of instantiating the model with specific
effort estimates, illustrating how the model might be used in
practice.

The first example considers a user with a relational database
(with a well engineered schema) who wants to know the average
revenue by month. In the second example a data analyst has two
files with 1K rows each in Microsoft Excel files. To complete
one task the data analyst has to join the two files, create a new
column as the sum of two columns and plot the results. The
third example is that of SQLShare[17], an ad-hoc schemaless
multi-tenant data sharing platform, with a cloud setup with 95
existing datasets and 5 datasets the data analyst has to upload.
Based on 10 datasets (5 existing, 5 new), she has to write
queries for 10 distinct questions collected from her managers.
The last example assumes the same tasks from the third example
but considers an analyst who does not have access to a database
and writes scripts instead. In these examples, we assume effort
is interpreted as development time. ωcatalog, ωcode, ωmanual &
ωexecution are the instantiated values of Ωcatalog(S), Ωcode(S, T),
Ωmanual(D,S, T) & Ωexecution(D,T) respectively.

a) Relational DBMS: Ωcatalog is a function of the schema
S. In the context of an RDBMS, ωcatalog is the effort required
to browse and internalize the schema in order to write a query.
We can estimate this effort by considering the size of the
schema — a large schema takes longer to understand than a
small schema. Ωcode is a function of the schema S and the
question T and measures the time required to write and debug
the query to calculate the average revenue per month. The more
complex the query, the longer it takes to write. The complexity
of a query might be estimated by its length, the number
of operators used in a query, or the number of tables used.
We will consider various definitions of query complexity in
§IV. The query may be select month, avg(revenue)
from revenues group by month. The manual effort
Ωmanual, here only opening the interactive console to access

the database, is negligible. Also note that the manual effort is
constant; it does not depend on D, S or T . The execution time
Ωexecution depends on the data D and the query T and might
be estimated as the product of the average execution time and
the expected number of executions required during debugging.

b) Excel: In the second example, Excel, ωcatalog is the
time to understand the structure of the two files. ωcode is the
effort of writing the formula to sum two columns, which is
negligible. The largest impact on the Variety Coefficient V in
this example is ωmanual since Excel does not support joins and
the data analyst has to manually move rows. ωmanual depends on
|D| which we assume is 1000. We might empirically determine
the amount of time an analyst spends inspecting each row and
multiply that by 1000. ωexecution is negligible in this case but
Excel is generally considered slow compared to databases or
scripts.

c) SQLShare: Similar to the RDBMS example, ωcatalog
and ωcode are the time needed to internalize the schema and
the time required to write a query. In this case, the schema is
potentially larger, but the cost is perhaps mitigated by keyword
search and schema browsing support provided by SQLShare.
Since the data analyst writes 10 queries, ωcode is proportional
to the number of queries |T |. The manual effort for SQLShare
ωcode is uploading the 5 datasets. Ωexecution is the runtime of
each query, times the iterations user takes to get it right.

d) Script: ωcatalog is the effort to understand the files.
Ωcode again scales with |T | but the effort per task is much
higher than writing a query in SQLShare. ωmanual is the effort
of setting up the environment to write custom scripts, which
varies depending on the environment. The runtime, Ωexecution,
compared to a database system will depend on the how much
the database can use indexes and other optimizations that are
hard to write in scripts. For scripts multiple iterations are
needed to get the code right, which increases the ωcode and
ωexecution. Although the workloads and datasets chosen in each
example were different, the model provides a way of reasoning
uniformly about the costs of data management. This allows us
to reason about overall complexities of each system to complete
a set of tasks from a user perspective. We summarize these
examples in Table I. These examples show ways in which one
could measure or estimate the effort to develop a more precise
model of variety.

Example Setup ωcatalog ωcode ωmanual ωexecution
RDBMS high medium medium very low low
Excel none high very low very high very high
SQLShare low medium high very low medium
Script none high very high very low high
Fusion Tables none medium very low high high
DataHub low low very high medium medium
Tableau Public none medium none high medium
Wrangler none medium very high low medium

TABLE I: Comparison of variety dimensions for various
application scenarios.

Also note that with growing data size D, Ωmanual only
increases for Excel. More tasks T affect Ωcode for all examples
except for Excel (which has increased Ωmanual) but for the
RDBMS and SQLShare the effort for each new task is much
lower.

IV. ANALYZING VARIETY IN RELATIONAL WORKLOADS

In §III, we described an abstract model for measuring high
variety, but did not instantiate the functions of the variety
dimensions Ωcatalog, Ωcode, Ωmanual, and Ωexecution are. In many
contexts, it is appropriate to estimate these effort functions in
terms of proxy metrics derived from existing workloads. In this
section, we consider several candidate proxy metrics and show
what they reveal about relevant workloads. We focus on weakly
structured relational workloads to simplify comparison between
different applications and to focus on semantic rather than
structural variety. In an accompanying work [17], we provide
algorithms to calculate these proxy metrics. We start with
proxies for Ωcatalog in §IV-A and proxies for Ωcode & Ωmanual
in §IV-B. We summarize these proxy metrics in Table II.

A. Estimating Catalog Complexity

The first few proxy metrics we consider can be used
to estimate Ωcatalog, which models the effort necessary to
understand the schema or catalog of the data.

a) Number of Tables: Perhaps the simplest estimate for
schema complexity is the number of tables. A larger number of
relations increases the number of possible queries and increases
the size of the schema. Moreover, it increases the effort required
for a user to discover relevant datasets, interpret their structure,
and write an appropriate query. Enterprise schemas can become
complex, but are relatively small and exhibit explicit, well-
defined relationships. Query clients support limited search and
discovery features for tables, revealing an assumption that the
typical size of schemas is small, and that all tables can be
inspected directly. A high variety data management system
must lift table discovery up as a first-class feature, as does
Google Fusion Tables and similar JBOT systems.

b) Number of Columns: The number of tables ignores
the complexity of the tables themselves; a simple extension
is to measure the complexity of the schema as the number of
columns. For this proxy it is more interesting to look at the
maximum and mean of the number of columns rather than the
total number of columns in all tables (the dimensionality of
the whole database).

c) Other Ωcatalog Proxies: Other proxies that capture
Ωcatalog are the data types used by the databases and other
structural data definitions such as foreign keys and triggers.
A naive way to capture the overall complexity of the schema
is to look at the size of the schema definitions in SQL. This
method however, only works for our examples because they
are all based on SQLServer and thus share a data definition
language (DDL). As before, these numbers may be misleading
if the schema has a lot of repetitions.

B. Workload Complexity

In this section, we look at two sets of proxies that are
describing the complexity of the query workload. The first set
is the number of tasks and the second is the query complexity.
The product of those two factors is the workload complexity.
The workload complexity defines the effort that contributes
to Ωcode. However, if some actions required by the workload
are not well supported and require manual work, Ωmanual is
affected as well.

1) Number of Tasks: The number of tasks is the first defining
factor of workload complexity. Number of unique tasks is
directly proportional to Ωcode and Ωexecution. While the number
of repetitive tasks affect Ωexecution alone.

a) Number of Queries: The most straightforward way
to count the number of tasks for the three workloads is to count
the number of queries. The total number of distinct queries
is proportional to Ωcode, as distinct queries suggest more code
required to get the task done.

b) Number of Query Plan Templates: Queries with the
same Structure: Removing duplicate queries by the query
string will still keep very similar queries like in TPC-H where
only parameters change. Instead of using a string similarity
metric, we use the query plan template, a representation of
the structure of a query to remove duplicates. In addition to
the tables and columns accessed by each operator we keep the
parameters for each operator but replace all constants with the
same value. A high absolute number of unique queries and
a high (Unique Queries

Total Queries) ratio are measures of high diversity of
queries in a workload and contribute to Ωcode.

2) Query Complexity: The second factor that contributes to
workload complexity and thus Ωcode is the complexity of the
individual queries. There is no consensus on how to measure
query complexity so the following proxy metrics are an attempt
to capture different facets of query complexity. We look at
complexity from a user and a system perspective.

a) Query String Length: The simplest measure of
complexity from both the user and system perspective is the
length of the query string. The longer the query the more a
user has to write and read. Longer queries usually also have
more diverse operations and complexity for the system.

b) Runtime: While the length of a query mainly in-
creases the complexity for a user, the runtime of a query
could be considered a suitable indicator of complexity from
the systems perspective. The Variety Coefficient model has a
dedicated factor Ωexecution since runtime is also an indicator
for the first Big Data V, Volume. We argue that runtime can
be very misleading when evaluating variety since it mostly
scales with the amount of data. Consequently, runtime does
not independently hint at variety.

c) Number of Operators: To capture the complexity of
a query for the system more accurately, we look at the number
of operations in the execution plan. More operations mean
more steps of computation which increases the complexity of
scheduling of data flow for the system. A better metric to
capture this case is to look at the diversity of operators and
count the number of unique operators per query. A combination
of both the number of operations and the number of distinct
operations intuitively captures complexity better than either of
the two metric.

d) Diversity of Operators: In the previous paragraph,
we looked at the number of distinct operators for each query.
The next question one might ask is what type of the operators
are present in the workload as a whole. This metric contributes
to the workload complexity as a whole (and thus Ωcode) which
is primarily of interest to system developers. This metric also
contributes to Ωmanual and Ωcode. If an operator is not supported,
the user will have to either use an alternative approach with

Metric Variety Dimension Impact
of Tables & Columns Ωcatalog Higher values could hint at higher variety, but we need to factor in the effect of compression.
of Queries, Distinct Queries & Distinct Tem-
plates

Ωcode Lower values of the ratios of # of Distinct Queries
of Queries & # of Distinct Templates

of Queries suggests lower variety.

Query Length & Runtime Ωcode, Ωexecution Simple measures, could hint at potential high Ωcode
No. of operators & distinct operators Ωcode Better estimator of query complexity, higher values suggest high Ωcode
Types of operators & expressions Ωcode & Ωmanual Higher values imply higher Ωcode but lack of a certain operator suggests very high Ωmanual
Table & Column Touch Ωcode Higher values increase variety.
Reuse Potential Ωcode and Ωexecution Suggests how diverse the queries are, less reuse potential is more diversity and Ωcode and Ωexecution
Table Coverage Ωcatalog and Ωcode Steep curve in the graph hints at lower variety

TABLE II: Summary of how proxy-metrics contribute to variety dimensions.

different operators (Ωcode) or manually do the work outside
the system (Ωmanual) (e.g. Microsoft Excel does not support
joins). An operation that is not supported at all increases
the effort for Ωmanual to infinity. Manually executing a join
contributes to Ωmanual and is directly proportional to the size of
the data. Another reason for looking at the type of operators in a
workload is that different operators have different complexities.
Hence, they require different amount of effort both from a
user perspective (understanding and writing queries) and from
a systems perspective. Query optimizers already provide cost
measurement for different operators, hence we will not focus
finding alternate metrics which look at this from a systems
perspective. Instead, we want to motivate that, from a user’s
perspective, different operators contribute differently to Ωcode.
Also, different operators have different complexities in terms
of effort required from user to write them.

e) Diversity of Expressions: In the previous paragraph
we stated that users have more difficulty writing some operators
than others. However, the complexity is also affected by
the parameters of the operator. Scalar computation is a very
common operator and the most common operator in SDSS.
Similarly, aggregation is (after scan) the most common operator
in SQLServer. The scalar operator and aggregate operator use
expressions to further specify the operation or aggregation. In
this section, we investigate what expression operators are used
in scalar expressions and aggregates.

f) Table Touch: Number of Tables Referenced per Query:
Another proxy measure of complexity, related to schema
complexity, is a metric we call table touch. It is defined as
how many distinct tables are “touched” by a query. A query
that uses more tables puts more cognitive load on a user and
adds execution complexity which contributes to Ωcode.

g) Column Touch: Number of Columns Referenced per
Query: Along the lines of the table touch, column touch is
the number of columns in a query measured as the number of
unique column used by the leaf operators in the execution plan.
Similarly to the dimensionality of the database in §IV-A this
metric describes the dimensionality of a query. Ωcode scales
with column touch. Science workloads have a) non-experts
and experts writing queries, b) unanticipated queries, and c)
implicit joins amongst a lot of tables.

3) Reuse Potential: Reducing Runtime: In §IV-B2 runtime
is a measure of complexity of a query that a system needs to
handle. The runtime however can be reduced and thus affect
Ωexecution less if we consider the workload as a whole rather
than each query individually. Roy et al. show experiments
in which 30% to 80% (depending on the workload) of
the execution time can be saved by aggressively caching

intermediate results[31]. Query optimization in the presence of
cached results and materialized views is beyond the scope of
this paper. Nonetheless, we implemented a simple algorithm to
calculate reuse of query results that matches subtrees of query
execution plans. While iterating over the queries, all subtrees are
matched against all subtrees from previous queries. We allow a
subtree that we match against to have less selective filters (filters
are a subset) and more columns for the same tables (columns is
a superset). If we find that we have seen the same subtree before,
we add the cost of the subtree as estimated by the SQLServer
optimizer to the saved runtime. Consequently, a precomputed
intermediate result does not cost us anything when being reused.
Although this algorithm does not accurately model the actual
execution time, we use it to estimate how diverse queries are.
The algorithm can underestimate the potential for reuse since
the matching misses cases when a rewriting would be needed.
It could overestimate since we assume infinite memory as well
as no cost for using a previously computed result.

a) Table Coverage: Proportion of Tables Referenced in
the Workload: In this section, we explore the relationship
between metrics of the workload and the database. Table
coverage is the cumulative number of “seen” tables, ordered
chronologically by query. This metric expresses how often a
new task requires new data. This metric covers Ωcatalog and
Ωcode on the two axis of the plot. In a low variety system we
expect the curve to be steep in the beginning since the first
few queries access all or a majority of the available relations.

C. Example Application Scenarios

a) TPC-H: TPC-H[6] is a standardized decision-support
benchmark consisting of analytical queries. The database
schema is fixed and there are only 22 query templates designed
to reflect typical retail analytic scenarios. These templates can
be populated with varying values for the parameters to generate
families of related queries. As a result, there is limited variety
in either the structure of the data or the queries and thus low
values contributing to Ωcatalog and Ωcode. We consider TPCH
representative of a typical enterprise workload, and in our
analysis it represents a low-variety control.

b) Sloan Digital Sky Survey (SDSS): The SkyServer
project of the Sloan Digital Sky Survey[20] (SDSS) is a redshift
and infrared spectroscopy survey of galaxies, quasars, and stars.
It led to the most detailed three-dimensional map of the universe
ever created at the time. The survey consists of multiple data
releases (10 to date), which represent different projects and
different stages of processing refinement. SDSS represents one
of the few publicly available query workloads from a live SQL
database supporting both ad-hoc hand-authored queries as well

as queries generated from a point-and-click GUI. The data
collected for each data release are publicly available through
the SkyServer interface[2]. The schema of the SDSS database
was carefully engineered and includes significant use of UDFs
and views. SDSS could be considered low-variety due to its
reliance on an engineered schema, but the complex workload
and table-valued UDFs are atypical for conventional databases
and representing an important aspect of variety, as we will say.
Intuitively, SDSS would exhibit low values of Ωcatalog but high
values of Ωcode and Ωexecution due to query complexity.

c) SQLShare: SQLShare[17] is a database-as-a-service
system targeting scientists and engineers. Users can upload
datasets, write queries across any datasets in the system, and
share the results as views. The goal is to reduce the overhead
in using relational databases in ad-hoc analytics scenarios:
installation, configuration, schema design, tuning, and data
ingestion. By uploading a dataset, users extend the schema of
the database. If they choose to share the new dataset, others
can use it and combine it with their own datasets. Queries can
be submitted through a web interface, allowing collaborative
query authoring and avoiding any software installation. The
SQLShare interface facilitates and encourages the aggressive
use of views. Users frequently create deeply nested hierarchies
of views to break down complex problems, clean and share
intermediate datasets, and share provenance. SQLShare has
been deployed in a number of scientific contexts without any
explicit SQL training. The use of SQLShare in ad-hoc analytic
contexts suggests that it should exhibit higher variety than
enterprise RDBMS applications. Specifically, we anticipate that
for all dimensions except Ωmanual the proposed proxy metrics
will exhibit high values.

V. CASE STUDY: SQLSHARE

§III and §IV talked about the factors which help quantify
variety. We can use these features to inform design decisions
about new database management systems. Recall that variety
can be modeled as the sum of the four ‘omegas’. A system
designed to lower some or all of the ‘omegas’ can help tackle
high variety. As a case study we talk about why a database-
as-a-service platform like SQLShare is better suited to handle
relational high variety than other systems. And what additional
features can be added to SQLShare to improve it further.
Table III shows a summary of SQLShare features and how they
affect each of the Ωs. Further details about SQLShare features
can found in our companion paper[17]. We believe that success
of SQLShare so far can be attributed to how it reduces Ωcatalog
and Ωmanual by allowing for relaxed schemas, first class views
and collaborative sharing. There are two point to note about
how SQLShare deals with Ωcode. First, SQLShare supports full
SQL: This reduces the complexity of code to users being able to
express them in SQL. While it true that its not always possible
to express complex tasks in SQL, given the nature of datasets
(just a bunch of tables) SQL becomes the goto language. In
our experience, scientists with little to no background in SQL
picked it up in no time [15], [16]. Second, SQLShare can
lower Ωcode further by incorporating more features in the like
‘query recommendation’ and ‘query auto completion’. Ωexecution
is something SQLShare could arguably do better in the future.
One possible way to achieve lower Ωexecution is to switch its
backend to faster systems like Myria[14], or a federation of
multiple database systems as demonstrated in BigDAWG[10].

TABLE III: Summary of SQLShare features.
Feature Requirement Ω lowered
Database as a
Cloud Service

Diverse users Ωcatalog,Ωmanual,Ωexecution

Relaxed
schemas

Weakly structured
data, “One-pass”
workloads

Ωcatalog,Ωmanual

First-class
views

Derived datasets Ωcode

User-controlled
permissions

Collaborative sharing Ωmanual

Full SQL Complex manipula-
tion

Ωcode,Ωmanual,Ωexecution

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a simple operational model of
variety motivated by an empirical analysis of real systems and
workloads and based on the idea that variety is more a function
of user intent and user effort than of the data itself. We intend
this approach to be used to assist evaluation of candidate high
variety data management systems (which we believe will be
best served on the cloud), and as a call to arms for the research
community to focus on variety with the same level of attention
as simpler questions of direct performance — questions are
no longer really the bottleneck in practice. The abstract model
guides reasoning, but cannot be used quantitatively without
modeling the effort functions. We considered the information
content of relational query workloads, reasoning about the total
opportunity for reuse as a measure of complexity. We found
that these metrics confirmed intuition about the relative variety
of the systems we considered. Table II summarizes section §IV
with respect to the model described in section §III.

a) For Database Designers: There has been traditionally
a separation of concerns between parts of a system, which affect
the different Ω’s. Minimizing Ωcatalog has been a focus of the
database community, Ωcode of software engineers, Ωmanual of
HCI researchers, and Ωexecution of systems. Making specialized
query language support (or its equivalent there of) decreases
both Ωcode and Ωmanual. It is interesting to note how lack of
support for a particular operation in a system (while still having
the most optimized algorithms for the operations it does support)
can increase Ωmanual more than it decreases Ωcode. The variety
model in this paper suggests that a unification of these efforts
is required to address variety concerns.

b) For Data Scientists: We anticipate the model being
used to challenge vendors to specify their value proposition:
if you claim to address variety challenges, you can articulate
the effect on the effort for data scientists — do you reduce the
coding effort at the expense of manual effort? Do you improve
performance but increase the complexity of the schema?
Even for non-experts, this model can serve as a reference
point. It can be used as a basis for questions to systems and
database developers on how their system fares over the different
dimensions of the variety coefficient V .

c) Future work: We performed this initial workload
analysis as a step towards a quantitative high variety benchmark
based in part on the SQLShare[17] dataset. As a first step, we
needed a model of variety that would capture and confirm
intuition about different application scenarios in order to justify

the use of a particular scenario as exhibiting high Variety.
Previous efforts to develop benchmarks focus exclusively on
performance, i.e., Volume and Velocity [30], [35], [12], but
do not address the variety problems cited as the bottleneck
in practical contexts. In future work, we will continue to
develop the techniques to analyze and quantitatively measure the
variety of workloads, allowing a before and after measurement
with which to evaluate systems and algorithms. We are also
considering caching opportunities for repetitive workloads in
complex schema-free situations. It is also worthwhile to look
at better ways to measure Ωmanual, something this work mostly
ignored. We are also working on detailed analysis of the query
connect graphs which we believe will turn out to be a useful
way to represent the properties of data and workload combined,
and may provide an application “signature” that we can use to
cluster problems and recommend solutions. In particular, we
will explore using query connect graphs to generate random
high variety workloads as the basis for benchmarks. Our hope
is that this paper initiates a research agenda in high variety
systems and benchmarking.

REFERENCES

[1] OpenRefine (formerly google refine). http://openrefine.org/. Accessed:
2014-10-14.

[2] Sloan digital sky survey SkyServer. http://cas.sdss.org/. Accessed:
2014-02-12.

[3] Stata. http://www.stata.com/.
[4] A. P. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande, A. J. Elmore,

S. Madden, and A. G. Parameswaran. Datahub: Collaborative data
science & dataset version management at scale. CoRR, abs/1409.0798,
2014.

[5] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge.
In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 1247–1250. ACM, 2008.

[6] T. P. P. Council. TPC-H benchmark specification. http://www.tpc.org/
tpch/, 2008.

[7] N. N. Dalvi, R. Kumar, and M. A. Soliman. Automatic wrappers for
large scale web extraction. PVLDB, 4(4):219–230, 2011.

[8] T. H. Davenport, P. Barth, and R. Bean. How ‘big data’is different. MIT
Sloan Management Review, 54(1), 2013.

[9] A. Doan and A. Y. Halevy. Semantic integration research in the database
community: A brief survey. AI magazine, 26(1):83, 2005.

[10] A. Elmore, J. Duggan, M. Stonebraker, M. Balazinska, U. Cetintemel,
V. Gadepally, J. Heer, B. Howe, J. Kepner, T. Kraska, et al. A
demonstration of the bigdawg polystore system. Proceedings of the
VLDB Endowment, 8(12):1908–1911, 2015.

[11] M. Franklin, A. Halevy, and D. Maier. From databases to dataspaces:
a new abstraction for information management. ACM Sigmod Record,
34(4):27–33, 2005.

[12] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A.
Jacobsen. Bigbench: Towards an industry standard benchmark for big
data analytics. In Proceedings of the 2013 international conference on
Management of data, pages 1197–1208. ACM, 2013.

[13] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen, J. Madhavan,
R. Shapley, W. Shen, and J. Goldberg-Kidon. Google fusion tables:
web-centered data management and collaboration. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of
data, pages 1061–1066. ACM, 2010.

[14] D. Halperin, V. Teixeira de Almeida, L. L. Choo, S. Chu, P. Koutris,
D. Moritz, J. Ortiz, V. Ruamviboonsuk, J. Wang, A. Whitaker, et al.
Demonstration of the myria big data management service. In Proceedings
of the 2014 ACM SIGMOD international conference on Management of
data, pages 881–884. ACM, 2014.

[15] B. Howe, G. Cole, E. Souroush, P. Koutris, A. Key, N. Khoussainova,
and L. Battle. Database-as-a-service for long-tail science. In Scientific
and Statistical Database Management, pages 480–489. Springer, 2011.

[16] B. Howe, F. Ribalet, D. Halperin, S. Chitnis, and E. V. Armbrust.
Sqlshare: Scientific workflow via relational view sharing. Computing
in Science & Engineering, Special Issue on Science Data Management,
15(2), 2013.

[17] S. Jain, D. Moritz, B. Howe, D. Halperin, and E. Lazowska. Sqlshare:
Results from a multi-year sql-as-a-service experiment. In Proceedings
of the 2016 ACM SIGMOD international conference on Management of
data, 2016.

[18] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive
visual specification of data transformation scripts. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
3363–3372. ACM, 2011.

[19] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Enterprise data
analysis and visualization: An interview study. In IEEE Visual Analytics
Science & Technology (VAST), 2012.

[20] S. M. Kent. Sloan digital sky survey. In Science with Astronomical
Near-Infrared Sky Surveys, pages 27–30. Springer, 1994.

[21] A. Key, B. Howe, D. Perry, and C. Aragon. Vizdeck: self-organizing
dashboards for visual analytics. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, pages
681–684. ACM, 2012.

[22] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. Snipsuggest:
Context-aware autocompletion for sql. Proceedings of the VLDB
Endowment, 4(1):22–33, 2010.

[23] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune: mitigating
skew in mapreduce applications. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, pages
25–36. ACM, 2012.

[24] D. Laney. 3d data management: Controlling data volume, velocity and
variety. META Group Research Note, 6, 2001.

[25] S. Lohr. For big-data scientists, ’janitor work’ is key hurdle to insights.
New York Times, August 17 2014.

[26] S. Madden. From databases to big data. IEEE Internet Computing,
16(3):0004–6, 2012.

[27] K. Morton, M. Balazinska, D. Grossman, and J. Mackinlay. Support the
data enthusiast: Challenges for next-generation data-analysis systems.
Proc. VLDB Endow., 7(6):453–456, Feb. 2014.

[28] A. Parameswaran, N. Polyzotis, and H. Garcia-Molina. Seedb: Visual-
izing database queries efficiently. Proc. VLDB Endow., 7(4):325–328,
Dec. 2013.

[29] D. Patil. Data Jujitsu: The Art of Turning Data Into Product. O’Reilly
Media, 2012.

[30] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López, G. Gibson,
A. Fuchs, and B. Rinaldi. Ycsb++: benchmarking and performance
debugging advanced features in scalable table stores. In Proceedings of
the 2nd ACM Symposium on Cloud Computing, page 9. ACM, 2011.

[31] P. Roy, K. Ramamritham, S. Seshadri, P. Shenoy, and S. Sudarshan. Don’t
trash your intermediate results, cache’em. arXiv preprint cs/0003005,
2000.

[32] L. Seligman, P. Mork, A. Y. Halevy, K. Smith, M. J. Carey, K. Chen,
C. Wolf, J. Madhavan, A. Kannan, and D. Burdick. Openii: an open
source information integration toolkit. In A. K. Elmagarmid and
D. Agrawal, editors, SIGMOD Conference, pages 1057–1060. ACM,
2010.

[33] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales, M. Cherniack,
S. B. Zdonik, A. Pagan, and S. Xu. Data curation at scale: The data
tamer system. In CIDR, 2013.

[34] N. N. Taleb. Antifragile: Things that gain from disorder, volume 3.
Random House Incorporated, 2012.

[35] E. Walker. Benchmarking amazon ec2 for high-performance scientific
computing. Usenix Login, 33(5):18–23, 2008.

[36] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
and J. Heer. Voyager: Exploratory analysis via faceted browsing of
visualization recommendations. Visualization and Computer Graphics,
IEEE Transactions on, 22(1):649–658, 2016.

[37] P. Zikopoulos, C. Eaton, et al. Understanding big data: Analytics for
enterprise class hadoop and streaming data. McGraw-Hill Osborne
Media, 2011.

http://openrefine.org/
http://cas.sdss.org/
http://www.stata.com/
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

