
Measuring Query Complexity in SQLShare Workload 
Aditya Vashistha 

adityav@cs.washington.edu 

Shrainik Jain 

shrainik@cs.washington.edu 

INTRODUCTION 

The Database-as-a-Service paradigm has gained a lot of popularity 

in the past few years[1]–[5]. There are multiple providers for a 

generic Database-as-a-Service like SQLAzure[1], Amazon 

RDS[3], Fusion Tables[4] & Big Query[5]. These systems are used 

by experts and non-experts for wide variety of tasks. Amongst 

them, the most popular use of these systems are for analytical and 

science workloads. We analyze one such workload on our 

homegrown Database-as-a-Service platform, SQLShare[6], for 

long tail sciences, with the aim to find ways of measuring 

complexity of queries written by SQLShare users. In past few 

years, SQLShare has seen a diverse workload of real science 

queries. Current benchmarks for evaluating the complexity of 

queries focus solely on system performance. In order to build 

systems that focus on user-productivity, there is a need to analyze 

the workloads on current systems from the point of view of how 

easy it is for users to use them.  

In this paper, we provide an analysis of queries from the SQLShare 

workload, to come up with an empirical formula to measure the 

query complexity as a function of the cognitive load on users and 

performance load on the system. Having a measure for query 

complexity, helps us measure users’ skill of writing queries and 

how it changes over time. It will also enable us writing smarter 

query recommendation systems for suggesting queries to users they 

understand better on the basis of their SQL skill level. Another use 

of this work is to have a quantifiable proof for the hypothesis that 

ad-hoc queries by non-experts can be “complex” too. 

Our work has the following contributions: 

1. We determine the metrics that impact query complexity. 

2. We write a tool for analyzing the importance of these 

metrics. 

3. We adapt Halstead measures for determining complexity 

of SQL queries. 

4. We determine an empirical formula for measuring query 

complexity in high-variety workloads. 

5. We compare the query complexity perceived by users 

(ground truth) with the query complexity determined 

using the metrics and their relative importance (step 1 

and step 2), the query complexity computed using 

Halstead measures (step 3), and the query complexity 

computed using the empirical formula (step 4).  

This paper is structured as follows. In the next section we provide 

a concrete definition of what we mean by query complexity and 

how user-intent is missing from the current definition. Following 

that, we present various properties of a query that affect query 

complexity, and mechanisms to measure them. We also look at 

what experts think are the most important measures of complexity. 

Next we look at methodologies to calculate the relative importance 

of these metrics in determining the query complexity. Following 

this are 4 ways of measuring query complexity for a subset of 

SQLShare queries and an evaluation of these measures and their 

correctness when compared to ground truth. We end with a 

discussion on the future directions and conclusions. 

QUERY COMPLEXITY 
Query complexity is often measured in terms of the resources 

required by a database server for executing the query. All database 

systems measure the complexity of a query in terms of space and 

time required for executing a query in the query optimization phase. 

However, we are interested in measuring the complexity of a query 

from the perspective of database users who are authoring these 

queries. For database users, we define query complexity as the 

cognitive load on a user while writing the query. In this paper, we 

will refer to query complexity as the complexity of a query from the 

perspective of a user rather than the system. 

FINDING A SET OF REPRESENTATIVE 

QUERIES FROM SQLSHARE 
SQLShare is a Database-as-a-Service for long tail science. It allow 

users to upload raw tabular data and write SQL queries on it, 

without the any need for setup and schemas. The users don’t need 

to worry about schema, the system automatically generates one. 

Howe et. al.[6], [7] have shown how SQLShare has resulted in 

improvement of productivity of researchers across multiple labs at 

the University of Washington. SQLShare workload consists of 

queries written by experts and non-experts (a total of 1178 users). 

SQLShare has a unique high-variety workload[8], with 19000 

queries (18500 distinct queries) over 6434 tables and 66632 

columns across all tables. 

We have been trying to understand the properties this workload 

with the eventual aim of building better systems for handling high-

variety data. In the context of this paper, we will talk only about the 

analysis of query complexity for SQLShare workload. We rely 

heavily on the tools we wrote for the overall analysis of SQLShare. 

One such tool is the QWLA (Query WorkLoad Analysis) tool[9]. 

Details of how the tool works are not in the scope this paper, but at 

a high level, a part of its implementation does the following: 

● Take a set of queries on a system (like SQLShare) as an 

input. 

● Generate XML query plans. 

● Parse them to extract interesting metrics from the queries 

like number of operators and number of expressions. 

Finding a set of representative queries from a high variety workload 

present a challenge because we want to make sure we get a subset 

of queries that are most diverse. In order to do this, we analyzed 

SQLShare query dataset and looked at the ordered list of queries 

based on each metric. We generated samples from each list 

capturing queries with high and low values of metrics. As a single 

query can have multiple metrics with high (or low) values, we got 

duplicated queries as well. Removing these duplicates from a list 

of 180 queries resulted in a query set of 117 unique queries. We 

refer to this set as the representative set of queries. An example 

query looks like the following:  

SELECT *  

FROM   (SELECT sql_query,  

               sql_query_hash,  

               x_col_name,  



               y_col_name,  

               vizlet_type,  

               Row_number()  

                 OVER (  

                   partition BY sql_query, 

sql_query_hash, x_col_name,  

                 y_col_name  

                   ORDER BY score DESC) AS rnk  

        FROM   [billhowe].[vizlet scores]) x  

WHERE  x.rnk > 1  

ORDER  BY sql_query,  

          sql_query_hash,  

          x_col_name,  

          y_col_name,  

          x.rnk DESC  

 

In the following sections, we will look at how we used this query 

set to figure out what metrics contribute most to the complexity of 

queries, what metrics are most important from the point of view of 

database experts, and a comparison of these. 

METRICS FOR QUERY COMPLEXITY 
In our prior work, we have provided an operational definition of 

variety based on the observation that the complexity of user intent 

and user effort matters as much as the complexity of the data 

itself—that variety is a function of both workload and data. We 

analyzed three relational workloads (SQLShare, SDSS, TPC-H) 

representing different points on the variety spectrum to evaluate 

candidate metrics for quantifying query complexity and schema 

complexity, and therefore effort. We proposed a Variety 

Coefficient V with respect to an environment Env consisting of a 

dataset D, a catalog S and a set of tasks T as 

VEnv(D; S; T) = 𝛺𝑐𝑎𝑡𝑎𝑙𝑜𝑔(𝑆)  +  𝛺𝑐𝑜𝑑𝑒 (𝑆, 𝑇) +
𝛺𝑚𝑎𝑛𝑢𝑎𝑙 (𝐷, 𝑆, 𝑇)  +  𝛺𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝐷, 𝑇)  

Here Ωcatalog(S) is the effort to comprehend the catalog, Ωcode 

(S,T) is the effort to write the code,  Ωmanual (D,S,T)is the effort 

to perform any manual work, and Ωexecution(D,T) is the effort to 

run the code. Together, the sum of these dimensions determine V.  

There are several metrics that could be derived from a query for 

estimating Ωcode (S,T). Some of them include number of 

operators, number of distinct operators, types of operators and 

expressions, number of tables, number of columns, and number of 

nodes per weakly connected component in a table connect 

graph[10]. Many of these metrics are also relevant for measuring 

query complexity. For our class project, we have selected the 

following metrics to impact the query complexity: 

 Number of tables in a query or table touch 

 Number of columns in a query or column touch 

 The length of a query 

 The number of operators in a query like Scan, Join, Filter 

 The number of expression operators in a query like LE, 

LIKE, GT, OR, AND, Count* 

 The runtime of a query   

We posit that a query with higher number of tables, higher number 

of referenced columns, longer length and runtime, and higher 

number of operators and expressions will considered to be more 

complex in nature. We have selected these metrics on the basis of 

our intuition and past experiences in authoring the queries.  

Relative Importance of Metrics 
We conducted a survey of database experts to identify the relative 

importance of metrics for query complexity. We send an email to 

members of database research group (~25 members) at the 

University of Washington and requested them to complete an email 

survey. In the survey, we asked the experts to rate each of the six 

metrics on a scale of 10 to indicate how well the metric determine 

the complexity of a query as per their experiences. We requested 

them to assign a high score to indicate high correlation between the 

query complexity and the metric, and a low score to indicate a weak 

correlation. A high correlation implied that as per their experience, 

the measure significantly impact the overall query complexity.  

Eight experts consisting of two faculty, one post-doctoral 

researcher and five database PhD students responded to our survey. 

The scores for each of the experts are indicated in Table 1. We also 

computed the mean score and normalized score for each metric. We 

also analyzed the outcomes of the survey on three dimensions: 

1. How much database experts agree to each other on the 

relative importance of metrics? 

2. How similar or different is the importance of various 

metrics? 

3. Is there any correlation among metrics on the basis of 

user rating? 

Agreement between Experts 
In order to measure agreement in the scores of database experts, we 

performed Kendall's coefficient of concordance (Kendall’s W) test. 

If the test statistic W is 1, then all the survey respondents have been 

unanimous, and each respondent has assigned the same order to the 

metrics. If W is 0, then there is no overall trend of agreement among 

the experts, and their responses may be regarded as essentially 

Table 1: Scores by Database Experts 

 Domink Magda Bill Shrainik Brandon Prasang Sudeepa Laurel Avg. Norm. 

Score 

Table Touch 8 5 6 7 3 5 7 8 6.12 0.18 

Column Touch 7 4 6 7 5 1 6 2 4.75 0.14 

Length 6 5 7 8 9 8 6 2 6.38 0.19 

Number of Operators 7 7 9 8 3 1 7 9 6.38 0.19 

Number of Expressions 9 3 8 9 5 10 5 6 6.88 0.20 

Query Runtime 2 5 2 3 7 1 6 4 3.8 0.11 

 



random. Intermediate values of W indicate a greater or lesser 

degree of unanimity among the various responses.  For our survey, 

we find a lesser degree of unanimity among the experts (W=0.19, 

p = 0.1, n.s).  

This prompted us to determine the agreement between various 

subsets of our expert group. We considered all pairs of experts (28 

pairs) and four sub-group of three experts and one sub-group of four 

experts. We evaluated Kendall’s W for 33 sub-group. The value of 

W for each sub-group is presented in Figure 1. The figure indicates 

the consensus among several people in the database group. The 

agreement between Shrainik and Bill, Magda and Sudeepa was 

highest wherein the agreement between Brandon and Laurel was 

lowest. 

Important Metrics 
We also wanted to measure how similar or different metrics are 

from each other. We conducted Friedman test to evaluate the 

chance that random sampling would result in sums of ranks as far 

apart as observed in this experiment. If the p value is small, we can 

reject the idea that all of the differences between metrics are due to 

random sampling and conclude instead that at least one of the 

metrics differ from the rest. On conducting the test (χ2(5) = 7.596, 

p = 0.18, n.s.), we found no compelling evidence that the metrics 

differ from each other. The failure to achieve statistical significance 

could also be because of insufficient data. 

Correlation among Metrics 
We were also interested in measuring any evidence for correlation 

among several metrics on the basis of expert rating. We conducted 

Kendall rank correlation coefficient and Spearman's rank 

correlation coefficient tests to measure the correlation between 

metrics. The Kendall's tau (τ) coefficient is -0.72 (p < 0.05) and 

Spearman's rho coefficient is -0.867 (p < 0.01) indicating a 

statistically significant negative correlation between runtime of a 

query and number of expressions. 

COMPUTING QUERY COMPLEXITY 

Using Ground Truth Coding 
We computed the complexity score for 117 distinct queries in the 

representative set. We rated each query on a scale of 100 and 

assigned a higher number to indicate higher complexity. We 

considered cognitive effort in writing the queries as the measure of 

complexity. Before assigning the complexity score, we read each 

query and also accessed various features of the query like number 

of tables, number of columns, number of expressions etc. The rating 

process consisted of three passes. In the first pass, the authors rated 

all the queries independently. In the second pass, both the authors 

reviewed the score of the other one to highlight inconsistent ratings 

given by the other independent of their score. In the third pass, the 

authors reviewed the queries highlighted by the other author to 

either revise their rating or keep the old rating.  

We computed the final complexity score as the average of the two 

ratings and normalized it on a scale of ten. The mean score of the 

distribution is 4.79, the minimum score is 0.45, the maximum score 

is 9.8 and the median score is 4. We ran two non-parametric test, 

Kendall rank correlation coefficient and Spearman's rank 

correlation coefficient, on the ranks obtained using the complexity 

score of first author and the ranks obtained using the complexity 

score of the second author. The results indicate significant 

correlation (Kendall's tau_b =.875, p < 0.01; Spearman's rho = .965, 

p < 0.01) in the complexity rank computed on the basis of scores 

assigned by the authors and thus, high agreement among them. We 

use these complexity scores as our ground truth for further 

experiments. Some example query ratings are:  

Query: 

SELECT *  

FROM   [bomanis@washington.edu].[testdatalist.csv]  

WHERE  column2 < 150  

   AND column1 > 1200  

Rating:  

1.1 

Query: 

SELECT *  

FROM   (SELECT sql_query,  

               sql_query_hash,  

               x_col_name,  

               y_col_name,  

               vizlet_type,  

               Row_number()  

                 OVER (  

                   partition BY sql_query, 

sql_query_hash, x_col_name,  

                 y_col_name  

                   ORDER BY score DESC) AS rnk  

 

Figure 1: Measuring Agreement among Experts in Ranking Metrics 



  

       FROM   [billhowe].[vizlet scores]) x  

WHERE  x.rnk > 1  

ORDER  BY sql_query,  

          sql_query_hash,  

          x_col_name,  

          y_col_name,  

          x.rnk DESC  

Rating:  

4.25 

 Our calculation for ground truth complexity score has limitations 

because of a fewer number of coders and potential bias. The ground 

truth score could be coded more rigorously by 1) including more 

experts for coding the complexity score, 2) conducting a user study 

where users are requested to explain the query and then code the 

complexity score, and 3) series of experiments where users are 

asked to write several queries and then code the complexity score 

for each of the query. In this paper, because of time constraints and 

lack of IRB approval, we will use the ground truth calculated by us.  

Using Experts’ Ranking 
As described in table 1, we computed a normalized weight for each 

metric by analyzing the scores given by experts. For all queries in 

the representative set of queries, we also computed the values for 

each metric. We computed the complexity score as the summation 

of multiplications of weight for each metric and its value.  

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =  ∑ 𝑊𝑖 ∗  𝑉𝑖 

Here 𝑊𝑖 is the normalized weight for a metric and 𝑉𝑖 is the value 

for that metric. For example, if a query references 1 table and 3 

columns, and has 1 operator, 3 expressions. 0-second runtime and 

a length of 97 characters, then the complexity score will be 

computed as: 

0.18*1+0.14*3+0.18*3+0.20*3+0.11*0+0.19*97=19.44. 

We computed a ranked-order of queries by using the complexity 

scores computed on the basis of experts’ vote. 

Using Halstead Measures 
Halstead measures are software metrics used for estimating the 

number of errors in a program and measuring complexity in a 

program. Cyclomatic complexity measures are also used for 

estimating the number of defects in a program and determining the 

complexity of a code. Cyclomatic complexity is computed using 

the number of edges, vertices and loops in a control flow graph. 

Halstead complexity is computed using the number of operators 

and operands in a program. Though these measures are not used to 

measure the complexity of SQL queries, we adapted the Halstead 

complexity measure to determine the query complexity.  The query 

complexity is calculated as: 

𝑄𝑢𝑒𝑟𝑦 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑛1

2
∗

𝑁2

𝑛2
∗ log2(𝑛1 + 𝑛2) 

Here n1 is the number of distinct operators, n2 is the number of 

distinct operands, N1 is the total number of operators and N2 is the 

total number of operands. We considered number of columns 

referenced in a query as the operands, and number of operators and 

expressions as Halstead operators for computing the Halstead 

complexity score for each query. We computed a ranked-order of 

queries in the representative set by using the complexity scores 

computed on the basis of Halstead measures. 

Regression for Query Complexity Formula 
We ran linear regression on the labeled complexity scores (ground 

truth) and the values of metrics for 117 queries. A complexity score 

(QC) is dependent on the 6 metrics: number of tables (𝑁𝑡𝑎𝑏𝑙𝑒), 

number of columns (𝑁𝑐𝑜𝑙𝑢𝑚𝑛), query string length (𝑄𝑙𝑒𝑛𝑔𝑡ℎ), 

number of operators (𝑁𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟), number of expressions 

(𝑁𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) and query runtime (𝑄𝑟𝑢𝑛𝑡𝑖𝑚𝑒).  

𝑄𝐶 = 𝑎 ∗  𝑁𝑡𝑎𝑏𝑙𝑒 + 𝑏 ∗  𝑁𝑐𝑜𝑙𝑢𝑚𝑛 + 𝑐 ∗   𝑄𝑙𝑒𝑛𝑔𝑡ℎ + 𝑑 ∗

  𝑁𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 + 𝑒 ∗   𝑁𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑓 ∗   𝑄𝑟𝑢𝑛𝑡𝑖𝑚𝑒   

To estimate the values of these coefficients, we used regression 

with 10-fold cross validation. The regression yielded the following 

coefficients:  

a = -0.00248, b = 0.000168, c = 0.001571, d = 0.012903, e = 

0.000355, f  = 8.96E-07. 

Based on this model, we conclude that the most important metric 

in measuring the query complexity is the number of operators, 

followed by the query length. The query runtime is almost 

negligible in determining the complexity of a query.  

It is also interesting to note that the number of tables were assigned 

a negative weight while determining the overall complexity score. 

This indicate that the number of tables may not be an important 

metric to determine the query complexity or its importance might 

be compensated by other metric like number of columns or number 

of operators. We found that the simple linear regression yielded a 

very high RMSE even on training data, suggesting that either linear 

regression is possibly not a good tool or the features are not linearly 

related or the data is faulty/insufficient. For future work, we will 

look at non-linear models to mitigate these limitations. 

Using the formula obtained using the regression, we computed 

complexity score for each query in the representative set and ranked 

them on the basis of complexity score.  

EVALUATING QUERY COMPLEXITY 
In this section, we compare the ranks of the query set obtained using  

 Ground truth query complexity score 

 Complexity score computed using experts’ rating of 

metrics 

Complexity score computed using Halstead measure 

 Complexity score computing using formula obtained 

from regression 

We conducted Kendall rank correlation coefficient and Spearman's 

rank correlation coefficient tests to measure the correlation between 

several complexity ranks. The results are depicted in Table 2. We 

found a statistically significant correlation between the rank-order 

obtained using ground truth score and the rank obtained using 

Halstead measure. The results also indicate that the ranks obtained 

using our version of Halstead measures (that relies on number of 

columns, expressions and operators in a query) has the most 

agreement with the rank obtained using ground truth score. We also 

saw a significant correlation among complexity rank computed 

using empirical formula derived from regression and ground truth.   

Another way of comparing different measures is to analyze the 

trends in complexity vs individual metrics. In Figure 2, 3 and 4, we 

show how change in values of different metrics relate to the overall 

complexity score of the query. This comparison is done for both 

complexity score obtained using experts’ score and ground truth 

complexity score. The key things to note from these graphs are: 

 When a metric is considered individually, increase in that 

metric alone should increase the overall complexity. 



 

Table 2: Correlation among Rank-order Obtained using Various Complexity Scores 

   Ground Truth Expert Metrics Halstead Regression 

Kendall's tau_b Ground Truth 1 .799** .832** .826** 

  Expert Metrics .799** 1 .785** .872** 

  Halstead .832** .785** 1 .751** 

  Regression .826** .872** .751** 1 

Spearman's rho Ground Truth 1 .942** .956** .958** 

  Expert Metrics .942** 1 .932** .958** 

  Halstead .956** .932** 1 .914** 

  Regression .958** .958** .914** 1 

** Correlation is significant at the 0.01 level (2-tailed)  

 

 

Figure 2: Comparison of Ground Truth vs Expert Scores for Expression and Log Ops 

 

 

Figure 3: Comparison of Ground Truth vs Expert Scores for Length and Runtime 

 

 



 The ground truth is available for queries that are either 

very complex, or very simple, presenting a bi-modal 

graph. We expect that with more diverse queries in the 

query set for ground truth, we will see better results and 

thus generate a better model.  

 Experts tend to give query length lower importance 

probably because it doesn’t relate directly to how 

complex a query plan is going to be, but users find it 

difficult to write longer queries which is probably the 

reason for a negative slope of trend line in Figure 3. 

RELATED WORK 
Complexity of queries in terms on cognitive load on the users is 

relatively untouched. This is because most of the database systems 

research is focused on performance of systems rather than 

productivity of users. Over the past few years, even non-computer 

scientists have realized the power of databases, as Howe et. al. 

[6][11] showed the power of building systems which required 

minimal setup. With this new found interest in this field, we feel 

that its time user productivity and ease of use of databases become 

‘first class design constraint’. To measure productivity and ramp up 

efforts of users we need a strong quantitative measures of 

complexity of composing queries. Siau et. al. [12][13] looked at 

cognitive mapping techniques for user-database interaction, and 

effects of query complexity on novice database users, but concrete 

query complexity measurements were missing from their work.  

Cyclomatic Complexity [14] and Halstead complexity [15] have 

been referred in literature as usual ways to measure the complexity 

of code. Our work is motivated from the fact that it is important to 

measure the complexity of the code both from the users’ point of 

view and systems’ point of view.  

Query optimizers analyze the complexity of queries internally. 

However, this analysis focuses on runtime and space complexity of 

queries and completely ignores the efforts users have to put in 

writing queries. Our eventual goal is to make better systems that 

give same amount of importance to user productivity as they give 

to system performance. Another reason for coming with newer 

complexity metrics is to have measures specific to relational 

queries, something that Cyclomatic complexity isn’t designed for. 

[16] and [17] show how usage logs and information about user 

sessions can be used to infer properties of a workload as it evolves 

over time. We use the similar approach of looking at logs, but our 

aim is to find out ways to measure the effort required by users to 

write a query. The idea of measuring query complexity based on 

user effort is new and few researchers have addressed it.  

CONCLUSION AND FUTURE WORK 
Query complexity is inherently difficult to quantify. We showed in 

this work how even experts in the field have different notions of 

what counts as complex. We presented different ways to measure 

query complexity and computed the accuracy of each way by 

comparing it with the ground truth (hand labeled queries). Our 

current analysis points out factors that are most important for query 

complexity (i.e. number of operators & expressions) and, factors 

least important (i.e., query runtime). We also presented a way in 

which Halstead complexity can be calculated for relational queries. 

We found that this measure works marginally better than just plain 

regression. This further hints that operators and expressions in a 

query are indeed the dominating factors in computing query 

complexity. 

Our efforts to compute query complexity is definitely a major step 

in the right direction, however there is still room for improvements. 

In future, we will consider more number of queries and much 

diverse queries while computing query set for measuring ground 

truth. We will also improve the methodology to compute ground 

truth complexity score by conducting user experiments and taking 

inputs from more experts. We will also compute models more 

complex than simple linear regressions for determining important 

metrics for computing query complexity. 

The analysis of query complexity is fundamental for making better 

systems. We plan to use this analysis in a number of ways in future. 

The measure of query complexity has several implication in 

benchmarking workloads or users. Coming up with a benchmark 

for science workloads that focus on user cognitive load require us 

to find a representative set of queries from workloads containing 

 

Figure 4: Comparison of Ground Truth vs Expert Scores for Tables and Columns 

 



queries of varying complexity. This is would only be possible after 

we have a way to measure the complexity of queries. There are 

several other implications of measuring query complexity for high-

variety workloads. The measures of query complexity can be used 

for measuring how SQL skill of database users evolve over time  by 

tracking the complexity of queries written by them. This can be 

particularly useful in classroom settings for tracking the progress 

of students. The measure of query complexity can also be used for 

making smarter query recommendation. Once we measure the SQL 

skill set of a user on the basis of complexity of queries the user is 

authoring, we can recommend auto-completion and suggestions 

that relates well to the level of skills of the user.  

Figures 5 show some early results for a sample use case of query 

complexity analysis, i.e. complexity variation over time. We 

generated these figures by calculating complexity using the 

empirical formula found by regression. In figure 5a we see a user 

who has never written a query with complexity more than 1 (on a 

scale of 10).  A query recommendation system should ideally take 

this into account and not recommend queries which are too 

complex. Some users (say students in a Database class) learn SQL 

over time, however it is difficult to prove this quantitatively. With 

a measure of query complexity we can now see this variation 

chronologically. Figure 5b shows this for a real user from 

SQLShare who is has learned SQL overtime.  

In future, we will explore these directions further. 
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Figure 5a and Figure 5b Complexity over time for 2 sample users from SQLShare 


