
Measuring Query Complexity in SQLShare Workload
Aditya Vashistha

adityav@cs.washington.edu

Shrainik Jain

shrainik@cs.washington.edu

INTRODUCTION

The Database-as-a-Service paradigm has gained a lot of popularity

in the past few years[1]–[5]. There are multiple providers for a

generic Database-as-a-Service like SQLAzure[1], Amazon

RDS[3], Fusion Tables[4] & Big Query[5]. These systems are used

by experts and non-experts for wide variety of tasks. Amongst

them, the most popular use of these systems are for analytical and

science workloads. We analyze one such workload on our

homegrown Database-as-a-Service platform, SQLShare[6], for

long tail sciences, with the aim to find ways of measuring

complexity of queries written by SQLShare users. In past few

years, SQLShare has seen a diverse workload of real science

queries. Current benchmarks for evaluating the complexity of

queries focus solely on system performance. In order to build

systems that focus on user-productivity, there is a need to analyze

the workloads on current systems from the point of view of how

easy it is for users to use them.

In this paper, we provide an analysis of queries from the SQLShare

workload, to come up with an empirical formula to measure the

query complexity as a function of the cognitive load on users and

performance load on the system. Having a measure for query

complexity, helps us measure users’ skill of writing queries and

how it changes over time. It will also enable us writing smarter

query recommendation systems for suggesting queries to users they

understand better on the basis of their SQL skill level. Another use

of this work is to have a quantifiable proof for the hypothesis that

ad-hoc queries by non-experts can be “complex” too.

Our work has the following contributions:

1. We determine the metrics that impact query complexity.

2. We write a tool for analyzing the importance of these

metrics.

3. We adapt Halstead measures for determining complexity

of SQL queries.

4. We determine an empirical formula for measuring query

complexity in high-variety workloads.

5. We compare the query complexity perceived by users

(ground truth) with the query complexity determined

using the metrics and their relative importance (step 1

and step 2), the query complexity computed using

Halstead measures (step 3), and the query complexity

computed using the empirical formula (step 4).

This paper is structured as follows. In the next section we provide

a concrete definition of what we mean by query complexity and

how user-intent is missing from the current definition. Following

that, we present various properties of a query that affect query

complexity, and mechanisms to measure them. We also look at

what experts think are the most important measures of complexity.

Next we look at methodologies to calculate the relative importance

of these metrics in determining the query complexity. Following

this are 4 ways of measuring query complexity for a subset of

SQLShare queries and an evaluation of these measures and their

correctness when compared to ground truth. We end with a

discussion on the future directions and conclusions.

QUERY COMPLEXITY
Query complexity is often measured in terms of the resources

required by a database server for executing the query. All database

systems measure the complexity of a query in terms of space and

time required for executing a query in the query optimization phase.

However, we are interested in measuring the complexity of a query

from the perspective of database users who are authoring these

queries. For database users, we define query complexity as the

cognitive load on a user while writing the query. In this paper, we

will refer to query complexity as the complexity of a query from the

perspective of a user rather than the system.

FINDING A SET OF REPRESENTATIVE

QUERIES FROM SQLSHARE
SQLShare is a Database-as-a-Service for long tail science. It allow

users to upload raw tabular data and write SQL queries on it,

without the any need for setup and schemas. The users don’t need

to worry about schema, the system automatically generates one.

Howe et. al.[6], [7] have shown how SQLShare has resulted in

improvement of productivity of researchers across multiple labs at

the University of Washington. SQLShare workload consists of

queries written by experts and non-experts (a total of 1178 users).

SQLShare has a unique high-variety workload[8], with 19000

queries (18500 distinct queries) over 6434 tables and 66632

columns across all tables.

We have been trying to understand the properties this workload

with the eventual aim of building better systems for handling high-

variety data. In the context of this paper, we will talk only about the

analysis of query complexity for SQLShare workload. We rely

heavily on the tools we wrote for the overall analysis of SQLShare.

One such tool is the QWLA (Query WorkLoad Analysis) tool[9].

Details of how the tool works are not in the scope this paper, but at

a high level, a part of its implementation does the following:

● Take a set of queries on a system (like SQLShare) as an

input.

● Generate XML query plans.

● Parse them to extract interesting metrics from the queries

like number of operators and number of expressions.

Finding a set of representative queries from a high variety workload

present a challenge because we want to make sure we get a subset

of queries that are most diverse. In order to do this, we analyzed

SQLShare query dataset and looked at the ordered list of queries

based on each metric. We generated samples from each list

capturing queries with high and low values of metrics. As a single

query can have multiple metrics with high (or low) values, we got

duplicated queries as well. Removing these duplicates from a list

of 180 queries resulted in a query set of 117 unique queries. We

refer to this set as the representative set of queries. An example

query looks like the following:

SELECT *

FROM (SELECT sql_query,

 sql_query_hash,

 x_col_name,

 y_col_name,

 vizlet_type,

 Row_number()

 OVER (

 partition BY sql_query,

sql_query_hash, x_col_name,

 y_col_name

 ORDER BY score DESC) AS rnk

 FROM [billhowe].[vizlet scores]) x

WHERE x.rnk > 1

ORDER BY sql_query,

 sql_query_hash,

 x_col_name,

 y_col_name,

 x.rnk DESC

In the following sections, we will look at how we used this query

set to figure out what metrics contribute most to the complexity of

queries, what metrics are most important from the point of view of

database experts, and a comparison of these.

METRICS FOR QUERY COMPLEXITY
In our prior work, we have provided an operational definition of

variety based on the observation that the complexity of user intent

and user effort matters as much as the complexity of the data

itself—that variety is a function of both workload and data. We

analyzed three relational workloads (SQLShare, SDSS, TPC-H)

representing different points on the variety spectrum to evaluate

candidate metrics for quantifying query complexity and schema

complexity, and therefore effort. We proposed a Variety

Coefficient V with respect to an environment Env consisting of a

dataset D, a catalog S and a set of tasks T as

VEnv(D; S; T) = 𝛺𝑐𝑎𝑡𝑎𝑙𝑜𝑔(𝑆) + 𝛺𝑐𝑜𝑑𝑒 (𝑆, 𝑇) +
𝛺𝑚𝑎𝑛𝑢𝑎𝑙 (𝐷, 𝑆, 𝑇) + 𝛺𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝐷, 𝑇)

Here Ωcatalog(S) is the effort to comprehend the catalog, Ωcode

(S,T) is the effort to write the code, Ωmanual (D,S,T)is the effort

to perform any manual work, and Ωexecution(D,T) is the effort to

run the code. Together, the sum of these dimensions determine V.

There are several metrics that could be derived from a query for

estimating Ωcode (S,T). Some of them include number of

operators, number of distinct operators, types of operators and

expressions, number of tables, number of columns, and number of

nodes per weakly connected component in a table connect

graph[10]. Many of these metrics are also relevant for measuring

query complexity. For our class project, we have selected the

following metrics to impact the query complexity:

 Number of tables in a query or table touch

 Number of columns in a query or column touch

 The length of a query

 The number of operators in a query like Scan, Join, Filter

 The number of expression operators in a query like LE,

LIKE, GT, OR, AND, Count*

 The runtime of a query

We posit that a query with higher number of tables, higher number

of referenced columns, longer length and runtime, and higher

number of operators and expressions will considered to be more

complex in nature. We have selected these metrics on the basis of

our intuition and past experiences in authoring the queries.

Relative Importance of Metrics
We conducted a survey of database experts to identify the relative

importance of metrics for query complexity. We send an email to

members of database research group (~25 members) at the

University of Washington and requested them to complete an email

survey. In the survey, we asked the experts to rate each of the six

metrics on a scale of 10 to indicate how well the metric determine

the complexity of a query as per their experiences. We requested

them to assign a high score to indicate high correlation between the

query complexity and the metric, and a low score to indicate a weak

correlation. A high correlation implied that as per their experience,

the measure significantly impact the overall query complexity.

Eight experts consisting of two faculty, one post-doctoral

researcher and five database PhD students responded to our survey.

The scores for each of the experts are indicated in Table 1. We also

computed the mean score and normalized score for each metric. We

also analyzed the outcomes of the survey on three dimensions:

1. How much database experts agree to each other on the

relative importance of metrics?

2. How similar or different is the importance of various

metrics?

3. Is there any correlation among metrics on the basis of

user rating?

Agreement between Experts
In order to measure agreement in the scores of database experts, we

performed Kendall's coefficient of concordance (Kendall’s W) test.

If the test statistic W is 1, then all the survey respondents have been

unanimous, and each respondent has assigned the same order to the

metrics. If W is 0, then there is no overall trend of agreement among

the experts, and their responses may be regarded as essentially

Table 1: Scores by Database Experts

 Domink Magda Bill Shrainik Brandon Prasang Sudeepa Laurel Avg. Norm.

Score

Table Touch 8 5 6 7 3 5 7 8 6.12 0.18

Column Touch 7 4 6 7 5 1 6 2 4.75 0.14

Length 6 5 7 8 9 8 6 2 6.38 0.19

Number of Operators 7 7 9 8 3 1 7 9 6.38 0.19

Number of Expressions 9 3 8 9 5 10 5 6 6.88 0.20

Query Runtime 2 5 2 3 7 1 6 4 3.8 0.11

random. Intermediate values of W indicate a greater or lesser

degree of unanimity among the various responses. For our survey,

we find a lesser degree of unanimity among the experts (W=0.19,

p = 0.1, n.s).

This prompted us to determine the agreement between various

subsets of our expert group. We considered all pairs of experts (28

pairs) and four sub-group of three experts and one sub-group of four

experts. We evaluated Kendall’s W for 33 sub-group. The value of

W for each sub-group is presented in Figure 1. The figure indicates

the consensus among several people in the database group. The

agreement between Shrainik and Bill, Magda and Sudeepa was

highest wherein the agreement between Brandon and Laurel was

lowest.

Important Metrics
We also wanted to measure how similar or different metrics are

from each other. We conducted Friedman test to evaluate the

chance that random sampling would result in sums of ranks as far

apart as observed in this experiment. If the p value is small, we can

reject the idea that all of the differences between metrics are due to

random sampling and conclude instead that at least one of the

metrics differ from the rest. On conducting the test (χ2(5) = 7.596,

p = 0.18, n.s.), we found no compelling evidence that the metrics

differ from each other. The failure to achieve statistical significance

could also be because of insufficient data.

Correlation among Metrics
We were also interested in measuring any evidence for correlation

among several metrics on the basis of expert rating. We conducted

Kendall rank correlation coefficient and Spearman's rank

correlation coefficient tests to measure the correlation between

metrics. The Kendall's tau (τ) coefficient is -0.72 (p < 0.05) and

Spearman's rho coefficient is -0.867 (p < 0.01) indicating a

statistically significant negative correlation between runtime of a

query and number of expressions.

COMPUTING QUERY COMPLEXITY

Using Ground Truth Coding
We computed the complexity score for 117 distinct queries in the

representative set. We rated each query on a scale of 100 and

assigned a higher number to indicate higher complexity. We

considered cognitive effort in writing the queries as the measure of

complexity. Before assigning the complexity score, we read each

query and also accessed various features of the query like number

of tables, number of columns, number of expressions etc. The rating

process consisted of three passes. In the first pass, the authors rated

all the queries independently. In the second pass, both the authors

reviewed the score of the other one to highlight inconsistent ratings

given by the other independent of their score. In the third pass, the

authors reviewed the queries highlighted by the other author to

either revise their rating or keep the old rating.

We computed the final complexity score as the average of the two

ratings and normalized it on a scale of ten. The mean score of the

distribution is 4.79, the minimum score is 0.45, the maximum score

is 9.8 and the median score is 4. We ran two non-parametric test,

Kendall rank correlation coefficient and Spearman's rank

correlation coefficient, on the ranks obtained using the complexity

score of first author and the ranks obtained using the complexity

score of the second author. The results indicate significant

correlation (Kendall's tau_b =.875, p < 0.01; Spearman's rho = .965,

p < 0.01) in the complexity rank computed on the basis of scores

assigned by the authors and thus, high agreement among them. We

use these complexity scores as our ground truth for further

experiments. Some example query ratings are:

Query:

SELECT *

FROM [bomanis@washington.edu].[testdatalist.csv]

WHERE column2 < 150

 AND column1 > 1200

Rating:

1.1

Query:

SELECT *

FROM (SELECT sql_query,

 sql_query_hash,

 x_col_name,

 y_col_name,

 vizlet_type,

 Row_number()

 OVER (

 partition BY sql_query,

sql_query_hash, x_col_name,

 y_col_name

 ORDER BY score DESC) AS rnk

Figure 1: Measuring Agreement among Experts in Ranking Metrics

 FROM [billhowe].[vizlet scores]) x

WHERE x.rnk > 1

ORDER BY sql_query,

 sql_query_hash,

 x_col_name,

 y_col_name,

 x.rnk DESC

Rating:

4.25

 Our calculation for ground truth complexity score has limitations

because of a fewer number of coders and potential bias. The ground

truth score could be coded more rigorously by 1) including more

experts for coding the complexity score, 2) conducting a user study

where users are requested to explain the query and then code the

complexity score, and 3) series of experiments where users are

asked to write several queries and then code the complexity score

for each of the query. In this paper, because of time constraints and

lack of IRB approval, we will use the ground truth calculated by us.

Using Experts’ Ranking
As described in table 1, we computed a normalized weight for each

metric by analyzing the scores given by experts. For all queries in

the representative set of queries, we also computed the values for

each metric. We computed the complexity score as the summation

of multiplications of weight for each metric and its value.

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝑊𝑖 ∗ 𝑉𝑖

Here 𝑊𝑖 is the normalized weight for a metric and 𝑉𝑖 is the value

for that metric. For example, if a query references 1 table and 3

columns, and has 1 operator, 3 expressions. 0-second runtime and

a length of 97 characters, then the complexity score will be

computed as:

0.18*1+0.14*3+0.18*3+0.20*3+0.11*0+0.19*97=19.44.

We computed a ranked-order of queries by using the complexity

scores computed on the basis of experts’ vote.

Using Halstead Measures
Halstead measures are software metrics used for estimating the

number of errors in a program and measuring complexity in a

program. Cyclomatic complexity measures are also used for

estimating the number of defects in a program and determining the

complexity of a code. Cyclomatic complexity is computed using

the number of edges, vertices and loops in a control flow graph.

Halstead complexity is computed using the number of operators

and operands in a program. Though these measures are not used to

measure the complexity of SQL queries, we adapted the Halstead

complexity measure to determine the query complexity. The query

complexity is calculated as:

𝑄𝑢𝑒𝑟𝑦 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑛1

2
∗

𝑁2

𝑛2
∗ log2(𝑛1 + 𝑛2)

Here n1 is the number of distinct operators, n2 is the number of

distinct operands, N1 is the total number of operators and N2 is the

total number of operands. We considered number of columns

referenced in a query as the operands, and number of operators and

expressions as Halstead operators for computing the Halstead

complexity score for each query. We computed a ranked-order of

queries in the representative set by using the complexity scores

computed on the basis of Halstead measures.

Regression for Query Complexity Formula
We ran linear regression on the labeled complexity scores (ground

truth) and the values of metrics for 117 queries. A complexity score

(QC) is dependent on the 6 metrics: number of tables (𝑁𝑡𝑎𝑏𝑙𝑒),

number of columns (𝑁𝑐𝑜𝑙𝑢𝑚𝑛), query string length (𝑄𝑙𝑒𝑛𝑔𝑡ℎ),

number of operators (𝑁𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟), number of expressions

(𝑁𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) and query runtime (𝑄𝑟𝑢𝑛𝑡𝑖𝑚𝑒).

𝑄𝐶 = 𝑎 ∗ 𝑁𝑡𝑎𝑏𝑙𝑒 + 𝑏 ∗ 𝑁𝑐𝑜𝑙𝑢𝑚𝑛 + 𝑐 ∗ 𝑄𝑙𝑒𝑛𝑔𝑡ℎ + 𝑑 ∗

 𝑁𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 + 𝑒 ∗ 𝑁𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑓 ∗ 𝑄𝑟𝑢𝑛𝑡𝑖𝑚𝑒

To estimate the values of these coefficients, we used regression

with 10-fold cross validation. The regression yielded the following

coefficients:

a = -0.00248, b = 0.000168, c = 0.001571, d = 0.012903, e =

0.000355, f = 8.96E-07.

Based on this model, we conclude that the most important metric

in measuring the query complexity is the number of operators,

followed by the query length. The query runtime is almost

negligible in determining the complexity of a query.

It is also interesting to note that the number of tables were assigned

a negative weight while determining the overall complexity score.

This indicate that the number of tables may not be an important

metric to determine the query complexity or its importance might

be compensated by other metric like number of columns or number

of operators. We found that the simple linear regression yielded a

very high RMSE even on training data, suggesting that either linear

regression is possibly not a good tool or the features are not linearly

related or the data is faulty/insufficient. For future work, we will

look at non-linear models to mitigate these limitations.

Using the formula obtained using the regression, we computed

complexity score for each query in the representative set and ranked

them on the basis of complexity score.

EVALUATING QUERY COMPLEXITY
In this section, we compare the ranks of the query set obtained using

 Ground truth query complexity score

 Complexity score computed using experts’ rating of

metrics

Complexity score computed using Halstead measure

 Complexity score computing using formula obtained

from regression

We conducted Kendall rank correlation coefficient and Spearman's

rank correlation coefficient tests to measure the correlation between

several complexity ranks. The results are depicted in Table 2. We

found a statistically significant correlation between the rank-order

obtained using ground truth score and the rank obtained using

Halstead measure. The results also indicate that the ranks obtained

using our version of Halstead measures (that relies on number of

columns, expressions and operators in a query) has the most

agreement with the rank obtained using ground truth score. We also

saw a significant correlation among complexity rank computed

using empirical formula derived from regression and ground truth.

Another way of comparing different measures is to analyze the

trends in complexity vs individual metrics. In Figure 2, 3 and 4, we

show how change in values of different metrics relate to the overall

complexity score of the query. This comparison is done for both

complexity score obtained using experts’ score and ground truth

complexity score. The key things to note from these graphs are:

 When a metric is considered individually, increase in that

metric alone should increase the overall complexity.

Table 2: Correlation among Rank-order Obtained using Various Complexity Scores

 Ground Truth Expert Metrics Halstead Regression

Kendall's tau_b Ground Truth 1 .799** .832** .826**

 Expert Metrics .799** 1 .785** .872**

 Halstead .832** .785** 1 .751**

 Regression .826** .872** .751** 1

Spearman's rho Ground Truth 1 .942** .956** .958**

 Expert Metrics .942** 1 .932** .958**

 Halstead .956** .932** 1 .914**

 Regression .958** .958** .914** 1

** Correlation is significant at the 0.01 level (2-tailed)

Figure 2: Comparison of Ground Truth vs Expert Scores for Expression and Log Ops

Figure 3: Comparison of Ground Truth vs Expert Scores for Length and Runtime

 The ground truth is available for queries that are either

very complex, or very simple, presenting a bi-modal

graph. We expect that with more diverse queries in the

query set for ground truth, we will see better results and

thus generate a better model.

 Experts tend to give query length lower importance

probably because it doesn’t relate directly to how

complex a query plan is going to be, but users find it

difficult to write longer queries which is probably the

reason for a negative slope of trend line in Figure 3.

RELATED WORK
Complexity of queries in terms on cognitive load on the users is

relatively untouched. This is because most of the database systems

research is focused on performance of systems rather than

productivity of users. Over the past few years, even non-computer

scientists have realized the power of databases, as Howe et. al.

[6][11] showed the power of building systems which required

minimal setup. With this new found interest in this field, we feel

that its time user productivity and ease of use of databases become

‘first class design constraint’. To measure productivity and ramp up

efforts of users we need a strong quantitative measures of

complexity of composing queries. Siau et. al. [12][13] looked at

cognitive mapping techniques for user-database interaction, and

effects of query complexity on novice database users, but concrete

query complexity measurements were missing from their work.

Cyclomatic Complexity [14] and Halstead complexity [15] have

been referred in literature as usual ways to measure the complexity

of code. Our work is motivated from the fact that it is important to

measure the complexity of the code both from the users’ point of

view and systems’ point of view.

Query optimizers analyze the complexity of queries internally.

However, this analysis focuses on runtime and space complexity of

queries and completely ignores the efforts users have to put in

writing queries. Our eventual goal is to make better systems that

give same amount of importance to user productivity as they give

to system performance. Another reason for coming with newer

complexity metrics is to have measures specific to relational

queries, something that Cyclomatic complexity isn’t designed for.

[16] and [17] show how usage logs and information about user

sessions can be used to infer properties of a workload as it evolves

over time. We use the similar approach of looking at logs, but our

aim is to find out ways to measure the effort required by users to

write a query. The idea of measuring query complexity based on

user effort is new and few researchers have addressed it.

CONCLUSION AND FUTURE WORK
Query complexity is inherently difficult to quantify. We showed in

this work how even experts in the field have different notions of

what counts as complex. We presented different ways to measure

query complexity and computed the accuracy of each way by

comparing it with the ground truth (hand labeled queries). Our

current analysis points out factors that are most important for query

complexity (i.e. number of operators & expressions) and, factors

least important (i.e., query runtime). We also presented a way in

which Halstead complexity can be calculated for relational queries.

We found that this measure works marginally better than just plain

regression. This further hints that operators and expressions in a

query are indeed the dominating factors in computing query

complexity.

Our efforts to compute query complexity is definitely a major step

in the right direction, however there is still room for improvements.

In future, we will consider more number of queries and much

diverse queries while computing query set for measuring ground

truth. We will also improve the methodology to compute ground

truth complexity score by conducting user experiments and taking

inputs from more experts. We will also compute models more

complex than simple linear regressions for determining important

metrics for computing query complexity.

The analysis of query complexity is fundamental for making better

systems. We plan to use this analysis in a number of ways in future.

The measure of query complexity has several implication in

benchmarking workloads or users. Coming up with a benchmark

for science workloads that focus on user cognitive load require us

to find a representative set of queries from workloads containing

Figure 4: Comparison of Ground Truth vs Expert Scores for Tables and Columns

queries of varying complexity. This is would only be possible after

we have a way to measure the complexity of queries. There are

several other implications of measuring query complexity for high-

variety workloads. The measures of query complexity can be used

for measuring how SQL skill of database users evolve over time by

tracking the complexity of queries written by them. This can be

particularly useful in classroom settings for tracking the progress

of students. The measure of query complexity can also be used for

making smarter query recommendation. Once we measure the SQL

skill set of a user on the basis of complexity of queries the user is

authoring, we can recommend auto-completion and suggestions

that relates well to the level of skills of the user.

Figures 5 show some early results for a sample use case of query

complexity analysis, i.e. complexity variation over time. We

generated these figures by calculating complexity using the

empirical formula found by regression. In figure 5a we see a user

who has never written a query with complexity more than 1 (on a

scale of 10). A query recommendation system should ideally take

this into account and not recommend queries which are too

complex. Some users (say students in a Database class) learn SQL

over time, however it is difficult to prove this quantitatively. With

a measure of query complexity we can now see this variation

chronologically. Figure 5b shows this for a real user from

SQLShare who is has learned SQL overtime.

In future, we will explore these directions further.

REFERENCES
[1] “SQLAzure.” [Online]. Available:

http://azure.microsoft.com/en-us/services/sql-database/.

[2] “Azure tables.” [Online]. Available:

http://azure.microsoft.com/en-

us/documentation/articles/storage-dotnet-how-to-use-

tables/#what-is-the-table-service.

[3] “Amazon RDS.” [Online]. Available:

http://aws.amazon.com/rds/.

[4] “Fusion Tables.” [Online]. Available:

https://support.google.com/fusiontables/answer/2571232.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,

“Bigtable: A distributed storage system for structured data,”

ACM Trans. Comput. Syst. TOCS, vol. 26, no. 2, p. 4, 2008.

[6] B. Howe, G. Cole, E. Souroush, P. Koutris, A. Key, N.

Khoussainova, and L. Battle, “Database-as-a-Service for

Long-Tail Science,” in Scientific and Statistical Database

Management, J. B. Cushing, J. French, and S. Bowers, Eds.

Springer Berlin Heidelberg, 2011, pp. 480–489.

[7] B. Howe, G. Cole, N. Khoussainova, and L. Battle,

“Automatic example queries for ad hoc databases,” in

Proceedings of the 2011 ACM SIGMOD International

Conference on Management of data, 2011, pp. 1319–1322.

[8] “Gartner’s 3D Data Management,” 3D Data Management. .

[9] Query Workload Analysis. .

[10] S. Jain, D. Moritz, B. Howe, and D. Halperin, “High Variety

Data Management.” [Online]. Available:

https://www.dropbox.com/s/73t3l07w81qg13g/paper.pdf?dl

=0.

[11] A. Key and B. Howe, “VizDeck: Self-Organizing Data

Dashboards for eScience.”

[12] K. Siau and X. Tan, “Cognitive mapping techniques for user-

database interaction,” IEEE Trans. Prof. Commun., vol. 49,

no. 2, pp. 96–108, Jun. 2006.

[13] K. L. Siau, H. C. Chan, and K. K. Wei, “Effects of query

complexity and learning on novice user query performance

with conceptual and logical database interfaces,” IEEE Trans.

Syst. Man Cybern. Part Syst. Hum., vol. 34, no. 2, pp. 276–

281, Mar. 2004.

[14] T. J. McCabe, “A Complexity Measure,” IEEE Trans. Softw.

Eng., vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[15] “Halstead complexity measures,” Wikipedia, the free

encyclopedia. 24-Oct-2014.

[16] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu,

“SnipSuggest: Context-aware Autocompletion for SQL,”

Proc VLDB Endow, vol. 4, no. 1, pp. 22–33, Oct. 2010.

[17] K. Morton, M. Balazinska, D. Grossman, R. Kosara, and J.

Mackinlay, “Public Data and Visualizations: How Are Many

Eyes and Tableau Public Used for Collaborative Analytics?,”

SIGMOD Rec, vol. 43, no. 2, pp. 17–22, Dec. 2014.

Figure 5a and Figure 5b Complexity over time for 2 sample users from SQLShare

