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ABSTRACT
We analyze the workload from a multi-year deployment of a database-
as-a-service platform targeting scientists and data scientists with
minimal database experience. Our hypothesis was that relatively
minor changes to the way databases are delivered can increase their
use in ad hoc analysis environments. The web-based SQLShare
system emphasizes easy dataset-at-a-time ingest, relaxed schemas
and schema inference, easy view creation and sharing, and full
SQL support. We find that these features have helped attract work-
loads typically associated with scripts and files rather than relational
databases: complex analytics, routine processing pipelines, data
publishing, and collaborative analysis. Quantitatively, these work-
loads are characterized by shorter dataset “lifetimes”, higher query
complexity, and higher data complexity. We report on usage scenar-
ios that suggest SQL is being used in place of scripts for one-off data
analysis and ad hoc data sharing. The workload suggests that a new
class of relational systems emphasizing short-term, ad hoc analytics
over engineered schemas may improve uptake of database technol-
ogy in data science contexts. Our contributions include a system
design for delivering databases into these contexts, a description of a
public research query workload dataset released to advance research
in analytic data systems, and an initial analysis of the workload
that provides evidence of new use cases under-supported in existing
systems.

1. INTRODUCTION
We recently completed a four-year exercise to study the use of

database technology in science and data science, where scripts and
files are the de facto standard for data manipulation and analytics.
Database technology has had limited uptake in these environments,
in part due to the overhead in designing a schema and setting up
a permanent database infrastructure. Changing data and changing
requirements make it difficult to amortize these upfront costs, and as
a result analysts tend to retreat to manipulating files with scripts in R,
Python and MATLAB. Simultaneously, there is no appropriate cor-
pus available for researchers to use to study this problem effectively.
Industry partners do not retain or do not share query workloads, and
certainly do not provide public access to data. Query workloads that
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do exist are associate with conventional pre-engineered database
applications rather than oriented toward ad hoc analysis of ad hoc
datasets.

Our hypothesis was that a relatively minor set of changes to how
existing database technology is packaged and delivered would be
sufficient to convince science and data science users to adopt SQL
in their day-to-day data manipulation and analysis tasks, potentially
displacing script-and-file based approaches. To test this hypothesis,
we built SQLShare, a web-based system designed to make database
technology easier to use for ad hoc tasks. We then deployed the
system as a service and logged a multi-year query log as a research
corpus for further analysis. This paper represents the release of the
corpus to the database community, a description of the system that
collected it, and an initial analysis of the data it contains. We also
performed some informal ad-hoc interviews with our active user
base, which is mostly comprised of researchers and scientists, and
some of the results and conclusions drawn are influenced by our
familiarity with these users..

Our ultimate goal is to design new systems to better support ad
hoc data management and analytics. Although we target researchers
in the physical, life, and social sciences, we find that the require-
ments in data-intensive science and data-intensive business have
begun to converge. The data scientists that are in high demand share
characteristics with academic researchers: a stronger math back-
ground and deep domain knowledge, traits that sometimes come
at the expense of software and systems expertise. In response, we
designed SQLShare [15, 14] to reduce the use of a database to a
minimal workflow of just uploading data, writing queries, and shar-
ing the results — we attempt to automate or eliminate steps for
installation, deployment, schema design, physical tuning, and data
dissemination. We deployed this system to determine its efficacy
in attracting science users and understand their requirements. This
experiment was not a controlled user study; rather, we deployed
SQLShare as a production service — an “instrument” to collect
measurements on the kind of datasets used in practice, the kinds of
queries these scientists and data scientists would write, and how the
specific SQLShare features would be used.

In this paper, we describe the corpus we collected during this
experiment, describe the SQLShare system used to collect the cor-
pus, and present findings from an initial analysis of the corpus. Our
results show that the specific features of SQLShare are associated
with specific usage patterns observed in the workload dataset, and
that these patterns may motivate new kinds of data systems. We
have made the query log dataset available to the research com-
munity to inform research on database interfaces, new languages,
workload optimization, query recommendation, domain-specific
data systems, and visualization. Our dataset is one of the only two
known real-world SQL workloads publicly available to the database

http://dx.doi.org/10.1145/2882903.2882957


research community (the other being the Sloan Digital Sky Sur-
vey workloads [18]), and the only one containing primarily ad hoc,
hand-written queries over user-uploaded datasets.

The workload suggests that some of our users are comfortable
expressing complex tasks in SQL (binning, integration across many
tens of datasets) and making use of advanced language features such
as window functions. Further, there is evidence that by relaxing
schema requirements and inferring structure automatically, we allow
analysts to use SQL itself to incrementally impose structure by
writing views: assigning types, renaming columns, cleaning bad
values, reorganizing tables — tasks normally associated with offline
preprocessing in a general purpose language.

Although SQL itself appears useful in this context, support for
complex query authoring emerges as an important research topic:
query recommendation, editors, debuggers, new languages support-
ing the common idioms found in this workload all appear well-
motivated. SQL has enjoyed a resurgence as an important interface
for analytics without necessarily relying on engineered schemas
(e.g., HIVE [31], SparkSQL [4], and Schema-free SQL [22]). More
recently Metanautix [2] has adopted SQL for image and video pro-
cessing tasks. Our work provides further evidence of SQL’s utility
in non-traditional contexts, especially in science.

We find that conventional database views are remarkably use-
ful for a variety of tasks in science and analytics environments:
protected data sharing, workflow provenance, data publishing, ab-
straction for data processing pipelines. To encourage the use of
views, we made view creation a side effect of query authoring and
were careful to erase any distinction between physical tables and
virtual views — both views and tables were considered a “dataset.”

Sharing results with collaborators without emailing scripts and
files emerged as an important use case. Collaborators reported
browsing long chains of nested views to understand the provenance
of a dataset. Snippets from one query were reused in other queries
routinely. Shared datasets could be queried and manipulated without
requiring data to be downloaded first. Altogether, these features led
to workloads that involved very short data lifetimes: Data could be
brought into the database easily, analyzed briefly with SQL, and
shared with other partners with a click. The users report that these
short-lifetime workloads were typically implemented as scripts in
R or Python; SQLShare demonstrates that they can be supported in
the database itself with minimal system changes.

We intend the database community to use this paper as a reference
for understanding how non-experts use SQL “in the trenches,” as
a description of a workload dataset to drive further research, and
as a baseline for comparison with new database systems targeting
similar users. This paper makes the following contributions:

• A new publicly available ad hoc SQL workload dataset of
24275 hand-written queries over 3891 user-uploaded tables
provided by scientists and data scientists in the life, physical,
and social sciences.
• A description of the important features of the SQLShare, a

system designed to increase uptake of database technology
for ad hoc analysis and deployed as the instrument used to
collect the workload.
• An initial analysis of the SQLShare workload linking the

features of SQLShare to specific usage patterns typically as-
sociated with scripts-and-files, along with a general character-
ization of these usage patterns.
• A comparison of the SQLShare workload with that of a con-

ventional schema-first science database to provide evidence
that the characteristics we uncover are unique to the SQL-
Share experiment.

Figure 1: Screenshot of the SQLShare user interface. Each dataset
is a view associated with some descriptive metadata and a preview.
Creating and sharing views is the primary workflow in using the
system.

2. PROBLEM CONTEXT
Relational databases remain underused in science (and data sci-

ence) despite a natural fit between hypothesis testing and interactive
query. Some ascribe this underuse to a mismatch between the re-
quirements of scientific data analysis and the models and languages
of relational database systems [29]. Our experience is that rows-and-
columns datasets remain ubiquitous in science, and that standard
relational models and languages remain a good conceptual fit. We
find that the key barriers to adoption lie elsewhere:

• Although collections of records are generally appropriate,
datasets in practice are weakly structured: they exhibit incon-
sistent types, missing and incorrect values, inconsistencies
across column and table names, horizontal and vertical de-
composition of logical datasets into sets of files. General
purpose languages and collections of files are perceived to
be the highest level of abstraction that can accommodate this
heterogeneity.

• Daily activity results in long chains of derived datasets. Raw
data are cleaned, restructured, integrated, processed, and ana-
lyzed — each step in the chain results in a derived dataset. The
processing history of the dataset is important for provenance
purposes. These derived datasets may be virtual or material-
ized, but in either case ease of recomputation is considered
paramount. The natural inclination is to model the process-
ing pipeline as a sequence of scripts, giving rise to workflow
management systems designed to manage the execution and
sharing of script-based processing [7, 9, 24, 30].

• As workloads become increasingly analytical, declarative
languages are perceived to be increasingly limited. The emer-
gence of impoverished SQL languages that lack support for
standard features exacerbates the problem.1

• Inter-institution collaboration demands selective sharing of
data, analysis steps, and results on-demand.

• Teams of researchers exhibit significant diversity, with vary-
ing backgrounds, varying experience levels, and varying tol-
erance for technical barriers. Data systems that require sig-
nificant installation, configuration, and loading steps before

1For example, the popular HIVE SQL dialect only supports sub-
queries in the FROM clause and does not support window functions,
complicating common analytical idioms that are naturally expressed
in GPLs using loops.



Table 1: Summary of observed requirements in science and data
science environments.

Requirement Feature Evidence
Weakly structured data Relaxed schemas Casting, cleaning, inte-

gration
Derived datasets First-class views Deep view chains, reuse,

abstraction
Collaborative sharing User-controlled

permissions
Public datasets, fine-
grained sharing

Complex manipulation Full SQL Use of complex idioms
and features

Diverse users SaaS Broad use
Low data lifetime Relaxed schemas “One-pass” workloads

delivering value are perceived as “maybe good for database
experts, but not right for me.”

• Highly dynamic analysis environments result in short data
lifetimes: datasets are presented to the system, analyzed, and
then put aside. In contrast, conventional database applications
tend to emphasize a permament, pre-engineered schema. The
transient nature of data makes it difficult to amortize the cost
of schema design and data loading in a conventional database
and motivate a tighter interaction loop for incorporating new
data sources.

Given these requirements, there is a temptation to design a new
system from scratch targeting these requirements. Instead, we con-
sider the null hypothesis: that existing database systems are largely
equipped to support these new environments, provided we change
their interfaces to support these new workflows. We consider how to
change the “delivery vector” of relational databases by emphasizing
certain features (full SQL, views) and de-emphasizing or automating
the use of other features (fixed, pre-engineered schemas).

In this paper, we first formalize these requirement and show
how we address them in SQLShare. Next we analyze SQLShare
workload to show how we fared on fulfilling these requirements
over the last 4 years. We then look at a comparison of SQLShare
workload with the SDSS workload and show how SQLShare queries
are more diverse and very complex. We conclude with a discussion
about the non-traditional workflows generated over SQLShare. We
show that by making use of databases simpler, SQLShare enabled
novice database users to build data analytic skills and focus on
science and domain expertise.

3. SQLSHARE PLATFORM FEATURES
The SQLShare [14] platform was designed, built and deployed

to deliver database technology into science contexts, and, as a side
effect, collect a workload dataset for use by the database research
community. Table 1 summarizes the key features required to support
science and data science use cases. Next we look at how each of
these feature were built into SQLShare.

SQLShare is a cloud-hosted data management system for sci-
ence emphasizing relaxed schemas and collaborative analysis. By
“relaxed schemas,” we mean that data can be uploaded as is, and
column types are inferred automatically from the data upon ingest
rather than prescribed by users. Moreover, the interfaces are de-
signed to accommodate the management of hundreds or thousands of
datasets per user instead of a single fixed schema linked by integrity
constraints. SQLShare supports a “Sea of Tables” model rather than
a pre-engineered schema. In this sense, it supports usage patterns
like those of a filesystem rather than a database: Datasets can be
freely created without regard to global constraints. Each dataset

is a collection of typed records and has a name, but otherwise the
system makes no assumptions.

SQLShare supports exploratory analysis by emphasizing the
derivation and sharing of virtual datasets via relational views, and
eschews destructive update at the tuple level in favor of dataset-level
versioning. Tasks typically considered out of scope for relational
databases, including preliminary data cleaning, timeseries analysis,
and statistical analysis, are implemented by creating multiple layers
of views. For example, nutrient information in an environmental
sensing application may contain string-valued flags indicating miss-
ing numeric data, incorrect column names, and may comprise many
separate files instead of one logical dataset. Instead of demanding
that these issues be resolved prior to ingest into the system, SQL-
Share encourages data to be uploaded “as-is” and repaired using
database features. Users may write one view to rename columns,
another to replace missing values cast types, a third to integrate the
files into one logical dataset, and a fourth to bin the data by time to
compute an hourly average. Any of these views can be shared with
collaborators as needed, and complete provenance of how the final
result was constructed from raw data is available for inspection.

SQLShare was deployed and managed as a cloud-hosted service,
which has been critical to the success of the experiment: The back-
end system was developed and supported by either zero or one
developer at any time, thanks to the automatic failure handling and
simplified deployment offered by the cloud providers.

The SQLShare experiment has been running in various forms
since 2011, and we have attracted hundreds of science users who
have run tens of thousands of queries over thousands of datasets.

3.1 Relaxed Schemas
Datasets are uploaded to SQLShare via the REST interface. Al-

though we anticipated adding support for a number of different file
formats, in practice we found that nearly all data was presented in
some variant of row-delimited and field-delimited format, e.g. csv.
Files are staged server-side and briefly analyzed to infer column
types and assign default column names if necessary. Somewhat sur-
prisingly, almost 50% of the datasets uploaded did not have column
names supplied in the source file. Once a schema is derived, the
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Figure 2: The SQLShare data model. (a) The internal structure of
a dataset, consisting of a relational view, attached metadata, and
a cached preview of the results. (b) A newly uploaded datasets
creates both a physical base table and an initial (trivial) wrapper
view. (c) The physical data are stored in base tables, but never
modified directly. (d) Wrapper views are indistinguishable from
other SQLShare datasets, except that they reference physical base
tables. (e) Derived datasets can be created by any user. Permissions
are managed in the underlying database.

appropriate table is created in the database and the file is ingested.
By staging the file server-side we ensure robustness: if ingest fails,
we can retry without forcing the user to re-upload the data. To infer



the format, we consider various row and column delimiter values
until the first N rows can be parsed with identical column counts.
To infer column types, the first N records are inspected. For each
column, the most-specific type is identified. For example, if every
value can be successfully cast as an integer, the type is assumed
to be an integer. This prefix inspection heuristic can fail, and non-
integer types may be encountered further down in the dataset. In
that case, the database raises an exception, we revert the type to
a string via ALTER TABLE, and the ingest continues. Besides
mixed-type columns, we also tolerate non-uniform row lengths. Ad-
ditional columns are created as needed to accommodate the longest
row, and these columns are padded with NULL for rows that do not
supply appropriate values. A total of 9% of the datasets uploaded to
SQLShare made use of this feature.

Our goal with this data ingest process is to tolerate (and ideally to
flag and expose) many types of data problems, including problems
with the structure, types, or values. We have designed the system to
ensure that we do not reject such dirty data, because many of our
target users (researchers in physical, life and social sciences) have
no capacity to clean, reformat, or restructure the data offline. If we
force them to use scripts (or even spreadsheets) to clean the data as
a preprocessing step, we are essentially asserting that SQLShare is
irrelevant for their day-to-day tasks. Instead, we want to tolerate
malformed data and encourage the use of SQL itself to scale and
automate cleaning and restructuring tasks.

3.2 Data Model: Unifying Views and Tables
We illustrate the data model of SQLShare in Figure 2.
Views are a first-class citizen in SQLShare. Views are created

in the UI (or programmatically in the REST interface) by saving
a query and giving it a name. Everything in SQLShare is accom-
plished by writing and sharing views: Users can clean data, assess
quality, standardize units, integrate data from multiple sources, at-
tach metadata, protect sensitive data, and publish results. We avoid
forcing the user to use the CREATE VIEW syntax of the SQL stan-
dard, for two reasons: First, we want a view to be conceptually
identical to a physical table — our design principle is “everything is
a dataset.” Second, the syntax proved awkward in initial tests with
users.

All datasets are considered read-only; the only way to modify a
dataset is by changing its view definition. Using UNION queries,
a view definition can be extended with new data to simulate batch
INSERTs. The advantage of this design is that provenance is main-
tained: an uploaded batch of data can be “uninserted” at a later date,
and the substructure of the dataset as a sequence of batch inserts can
be inspected and reasoned about. The disadvantage of this approach
is that it prevents tuple-at-a-time updates and inserts. However, we
find that a key characteristic of our target workloads is dataset-at-a-
time processing, and we have not seen this design principle reported
as a weakness. The REST interface provides some convenience
features for appending batches of tuples: An append call accepts
an existing dataset name E and a newly uploaded dataset name N
as input, and, if the schemas are compatible, the query definition
associated with E will be rewritten as (E)UNION(N). Down-
stream views and queries will automatically see the new data with
no changes required. For some applications, it is important that the
data doesn’t change without the consumers’ knowledge. In these
cases, the user can materialize the dataset to create a snapshot
that is distinct from the original view definition. SQLShare does not
automatically materialize views to improve performance; there is
an application-specific tradeoff with freshness that we have not yet
explored how to optimize. We are exploring certain “safe” scenarios
where we can make materialization decisions unilaterally.

Each dataset in SQLShare is a 3-tuple (sql, metadata, preview),
where sql is a SQL query, metadata consists of a short name, a
long description, and a set of tags, and preview is the first 100
rows of the dataset. When a user uploads a table to SQLShare, a
base table T is created, along with a trivial wrapper query of the
form SELECT * FROM T. This design helps unify the concept
of tables and views and also provides an initial example query for
novice SQL users to operate from. We find in practice that editing
a simple query into an “adjacent” query is very easy for anyone in
practice; only writing a complex query from scratch is difficult. The
owner of the dataset is the user who created it; ownership cannot be
transferred. Each dataset is associated with a set of keyword tags
to ease search and organization in the UI. The set of permissions
provides user-specific access. Users are not allowed to run DDL
statements like CREATE TABLE etc. since that would make it dif-
ficult to automatically make a view on top of every table. Users
can make a dataset public, share it with specific users, or keep it
private. When sharing derived views, complex situations can arise.
The semantics for determining access to a shared resource uses the
concept of ownership chains, following the semantics of Microsoft
SQL Server. If user A owns a table T , they can share a derived view
V1(T ) with user B even if the table T has not been shared, and user
B will have access. But if user B then creates a derived V2(V1(T ))
and shares it with user C, user C will encounter an error because
the ownership chain V 2→ V 1→ T is broken (i.e., it involves two
different users, A and B.) We are exploring whether these semantics
are too conservative for our requirements, given that sharing is a
first-class concept.

3.3 Query Processing
Queries are submitted to SQLShare primarily via the WebUI or

sometimes directly through the REST API. REST server receives
the query request, and assigns an identifier to the request which is
sent back to the requesting client. The WebUI uses this identifier to
regularly get results or check for query status. This was an obvious
choice over an atomic request for queries as long running queries
would reduce the requests the REST server can handle. The REST
server uses the MS SQL Azure’s C# library to run queries internally.
As of now, we do not create any automatic indices, however this is a
feature we might build later. Since the dataset updates are allowed
only via creation of newer datasets, we can assume that the result of
query wouldn’t change over time. This allows us to save the preview
results for each dataset and serve them instead of running the query
every time the dataset is accessed. However the query needs to be
actually run if the user submits a ‘download results’ request.

3.4 Architecture
The architecture of SQLShare appears in Figure Figure 3. The

core system consists of a REST interface in front of a database
system that implements the data model, query log, ingest semantics,
manages long-running queries, handles exceptions, and manages
authentication. The SQLShare REST interface is compatible with
any relational database, but it was originally deployed using the
Microsoft Azure Database (originally SQL Azure). The Microsoft
Azure Database is mostly interface compatible with Microsoft SQL
Server, except that it requires all tables to be associated with clus-
tered index. In SQLShare, we avoid exposing DDL to users and
therefore create a clustered index by default on all columns in the
database, in column order. The front-end UI is in no way a priv-
ileged application; it operates the REST interface like any other
client. Indeed, other clients exist, in some cases built by the com-
munity. For example, the R client for SQLShare was written by a
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Figure 3: SQLShare architecture, primary user interface is the Web
UI which communicates with the REST layer for dataset ingest,
modification (via views) and querying. REST server interacts with
the backend database which also keeps a catalog of user queries.

user based on their own requirements, and multiple javascript-based
visualization interfaces have been developed.

3.5 Full SQL
We built SQLShare in part to faciliate access to the features of

the full SQL standard, finding from our experience working with
scientists that their use cases frequently required features that are
not provided by simplified SQL dialects such as those found in
HIVE [31] or Google Fusion Tables [12]. Specifically, window func-
tions, unrestricted subqueries, rich support for dates and times, and
set operations all appeared necessary in early requirements analysis.
Since the interface is organized around a workflow of copying and
pasting snippets of SQL from existing queries (a practice that in
some cases may even be beneficial [26] [21]), we see evidence of
users writing increasingly complex queries over time.

To support full SQL, we parse each query using a third-party
standards-compliant SQL grammar in ANTLR, which we modi-
fied to accommodate details of the SQL Azure database and avoid
common user pitfalls. For example, when creating a view, we auto-
matically remove any ORDER BY clause to comply with the SQL
standard.

Figure 1 shows a screenshot of the SQL editor. Users edit queries
directly in the browser, but can access recently viewed queries to
copy and paste snippets as needed. We analyze the usage of SQL
features in Section 5.3.

4. OVERVIEW OF THE SQLSHARE
WORKLOAD

SQLShare logs all executed queries; this log was collected to in-
form research on new database systems supporting ad hoc analytics
over weakly structured data. With permission from the users, we
are releasing this dataset publicly for use by the database research
community. To our knowledge, no other workload in the literature
provides user-written SQL queries over user-uploaded datasets.

The SQLShare workload has a total of 24275 queries on 7958
datasets (including 4535 derived datasets implemented as views),
authored by 591 users over period of four years. Out of 591 users,
260 are from universities (indicated by a .edu address). In addition,
we have interviewed a number of our top users and are familiar with
their science and their requirements. There are a total of 3891 tables
with an average of 12 queries per table. Figure 4 shows a histogram

depicting the distribution of queries per table. Most tables are either
accessed just once or they are queried >= 5 times.

The SQLShare system is not intended for large datasets; the total
volume of data presently in the system is 143.02 GB. However,
users delete datasets regularly so this number doesn’t represent the
size of all the datasets that have ever been present SQLShare. Indeed,
based on our interactions with some users, they claimed to have
developed a daily workflow of uploading data, processing it in SQL,
downloading the results, and then deleting everything. Diversity
rather than scale is the salient feature of the workload.

A short survey sent to all users to assess the effectiveness of
SQLShare revealed that only 6 (out the 33 users who responded)
felt that some other off-the-shelf database system could meet their
data management needs. 18 of 33 reported that no other tool would
work for their requirements. The remaining 9 users mentioned that
non-database tools such as iPython notebooks might be appropriate
for their tasks. 23 of 33 users mentioned that “ease of data up-
load & cleaning” and “ability to share” was the reason they found
SQLShare most helpful.
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Figure 4: Distribution of queries per table. a) About a third of the
tables accessed just once. b) Greater than a third of the tables are
accessed many times, with the most common table being queried
766 times, suggesting two distinct use cases.

Extracting information from query logs.
To analyze the complexity and diversity of the SQLShare logs

(Section 6), we developed a framework for extracting metrics from
each query and its associated plan. The metrics of importance
are query length, runtime, number & type of physical & logical
operators, number & type of expression operators, tables & columns
referenced and operator costs. We will use these metrics to drive the
discussion the later sections.

The algorithm for extraction has 2 phases. In phase 1 each query
in the SQLShare logs were sent to SQLServer, which returned the
execution plan along with estimated result sizes and runtimes for
each operator. The format of the execution plan is XML and is
obtained by setting the SHOWPLAN_XML property2. The operator
tree along with interesting properties needed for further analysis is
extracted from the XML document with XPath [6]. These properties
are estimated runtimes, estimated result sizes and predicates or other
properties of an operator. Predicates for selections are split into
clauses such that if one selection has a superset of predicates, it
is more selective and filters out more tuples. Expressions are also
extracted via XPath. Phase 1 extracts these properties and makes a
simpler JSON plan for easier future consumption and saves it as an
additional column in the query log. Figure 5a provides a conceptual
visualization of Phase 1.

2http://msdn.microsoft.com/en-us/library/ms187757.aspx

http://msdn.microsoft.com/en-us/library/ms187757.aspx


Users 591
Tables 3891
Columns 73070
Views 7958
Non-
trivial
Views

4535

Queries 24275
(a) Workload Metadata

Feature Mean Value
Length 217.32 char.
Runtime 3175.38 s.
# of Operators 18.12
# of Distinct
Operators

2.71

# of Tables ac-
cessed

2.31

# of Columns
accessed

16.22

(b) Query Metadata
Table 2: Aggregate summary of SQLShare metadata. SQLShare
workload has an average 12 queries per table.

Phase 2 of the algorithm goes over each query and correspond-
ing JSON plan and extracts other important query metadata like
referenced tables, columns and views per query. This metadata
is aggregated into separate tables in the query catalog for further
analysis of the workload. Figure 5b shows a flowchart for this phase
of the algorithm.

Listing 1 shows a sample query and the corresponding extracted
properties. Most SQL providers support the ‘query explain’ feature,
which returns a raw query plan in the XML format, so the method-
ology explained in this section can be applied to other workloads
as well. We implemented and bundled all functionality as a python
library whose source code is available online on demand 3. As a
sample implementation for other workloads, we have provided code
to perform this analysis on SDSS and TPCH [8]. The python library
also implements most of analysis that we make in the sections that
follow.

Listing 1 Extracted structure and properties from a sample query.
query: "SELECT * FROM incomes

WHERE income > 500000"
physicalOp: "Clustered Index Seek"
io: 0.003125
rowSize: 31
cpu: 0.0001603
numRows: 3
filters:

- "income GT 500000"
operator: "Clustered Index Seek"
total: 0.0032853
children: []
columns:

incomes:
- "name"
- "income"
- "position"

The total size of the query logs along with this meta data (e.g.
JSON query plans) is 398 MB. This will also be made available
publicly. A summary of metadata extracted from SQLShare logs is
shown in table Table 2a and Table 2b. As mentioned in §3.2 SQL-
Share creates trivial views over base tables to remove the distinction
between a table and a view. Hence for analysis that follows in the
later section, we will only look at the non-trivial views (i.e. the ones
explicitly created by users) unless otherwise specified.

3https://github.com/uwescience/query-workload-analysis

5. EVALUATION OF SQLSHARE
FEATURES

In this section, we consider the specific features of SQLShare
and analyze their effect on the usage patterns we see in the work-
load. Each subsection represents a key finding associated with a
specific feature of SQLShare. We have conducted interviews with
our most active users, who are primarily researchers in the life, earth,
and social sciences. Statements about our users’ backgrounds and
requirements are informed by these interviews.

5.1 Relaxed Schemas Afford Integration
The requirement for relaxed schemas is motivated by the ubiquity

of weakly structured data. Further, the collaborative nature of data
science results in a need to frequently share intermediate results
before the data has been properly organized and described. As a
result, we designed SQLShare to tolerate (and even embrace) upload
of weakly structured data, encouraging users to write SQL queries
to repair and reorganize their data. We build evidence to support this
hypothesis by searching the corpus of 4535 derived datasets (views)
for specific SQL idioms that correspond to “schematization” tasks:
cleaning, typecasting, and integration.

NULL injection: About 220 of the derived datasets use a CASE
expression to replace special values with NULL. ii) Post hoc Column
Types: After removing bad tuples and replacing missing values with
NULL, we find that about 200 of derived datasets used SQL CAST
to introduce new types on existing columns.

Vertical Recomposition: Datasets presented to SQLShare are
often decomposed into multiple files that reflect the manner in which
the data was collected. Rather than requiring that these files be
concatenated offline or requiring that a single table be designed
to store all such data, we encourage users to “upload first, ask
questions later.” We found evidence of about 100 datasets that
involved vertical recomposition using UNION in SQL.

Column Renaming: Datasets presented to SQLShare frequently
had no column names in the source file; SQLShare automatically
assigns default columns names in these cases and we encourage
users to write SQL to assign semantic names. We see 1996 uploaded
tables (about 50%) that had at least one default-assigned column
name and 1691 uploaded tables for which all columns names were
assigned a default value. Almost 16% of datasets involve some kind
of column renaming step, suggesting that users have adopted SQL
as a tool for adding semantics to their data. Rejecting datasets due
to incomplete column names would have clearly limited uptake.

Overall, the data suggests that relaxed schemas played an impor-
tant role in many use cases, and that tolerance for weakly structured
data is an important part of any data system targeting science and
data science environments.

5.2 Views Afford Controlled Data Sharing
The view-centric data model of SQLShare (Figure 2) allows users

to think in terms of logical datasets rather than understanding a
distinction between physical tables and virtual views. The hierarchy
of derived views provides a simple form of provenance; the user
can inspect (and with permission, edit) the specific steps applied to
produce the final result. The view-centric data model also affords
collaboration: users can share the derived dataset (and its prove-
nance) without emailing files that get out of sync with the master
data. Moreover, collaborators can directly derive their own datasets
in the same system, and the provenance relationship is maintained.
The view-centric data model was a very successful feature in SQL-
Share: About 56% of the datasets in the system are derived from
other datasets using views. Among the top 100 most active users,
multi-layer view hierarchies were quite common. Figure 6 shows

https://github.com/uwescience/query-workload-analysis
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(a) Phase 1 of extracting information from query log. For
each query, backend SQL Server is asked to explain it and re-
turn the corresponding XML plan. The XML is then cleaned
for easier parsing and the extracted information is converted
to a JSON plan for easier consumption by further steps. This
JSON plan is saved back to query catalog as a new column.
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(b) Phase 2 of extraction methodology picks a JSON plan
from previous step. From the JSON plan, the referenced
tables, columns and views are extracted and saved in separate
tables in the query catalog. Next the operators, expressions
and corresponding costs are extracted and saved into separate
tables in the catalog as well.

Figure 5: Workload Analysis Methodology

the max depth of dataset hierarchies forthese 100 users. A view
that references only base datasets is assigned a depth of 0. Other
users would use views as query templates: They would use apply
the same query to multiple source datasets, copying and pasting
the view definition and only changing the name of a table in the
FROM clause. Copy-and-paste seems inadequate here; motivated
by this finding we intend to lift parameterized query macros into the
interface as a convenience function4.
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Figure 6: The maximum view depth for the 100 most active users
of SQLShare. The data suggest that the ability to derive and save
new datasets using views was an important features.

The view-centric data model also facilitates sharing: users can set
daatset-level permissions, which are implemented in the database as
view permissions. A dataset can either be private, public or shared
with specific set of users. The permissions features were heavily
used. About 37% of the datasets in SQLShare are publicly acces-
sible, even though the default is to keep data private. About 9% of
the datasets were shared with a specific other user. Moreover, about
2.5% of the views access other datasets that the author does not own,
and over 10% of the queries logged in the system access datasets
that the query author does not own. Beyond just collaborative anal-
ysis, the permissions feature allowed SQLShare to function as a
data publishing platform. Several users cited SQLShare datasets
in papers. One user minted DOIs for datasets in SQLShare; we

4A query macro would be different than a conventional parameter-
ized query, since it allows parameters in the FROM clause rather than
only as expressions.

are adding DOI minting into the interface as a feature in the next
release.

5.3 Frequent SQL Idioms
SQLShare was designed to facilitate access to full, standards-

compliant SQL as opposed to relying on the simplified SQL dialects
often associated with analytics and sharing platforms (e.g., HIVE
SQL [31], Google Fusion Tables [12]).

To evaluate whether full SQL was actually warranted, we counted
the queries that use specific SQL language features that are some-
times omitted in simpler SQL dialects. As one might expect, queries
involving sorting were comon (24%), and top k and outer join
queries were frequent enough to justify support in any system (2%
and 11% respectively). Perhaps more surprisingly, window func-
tions (expressed using the SQL-standard OVER clause) appeared
in about 4% of the workload. Virtually no systems outside of the
major vendors support window functions; these newer systems will
not be capable of handling the SQLShare workload!

In addition to specific SQL language features, we found evidence
of recurring SQL “idioms” or “design patterns” that might motivate
higher-level convenience functions to support query authoring. Ag-
gregating timeseries and other data by computing a histogram was
common enough (and awkward enough) that we are considering
adding special support. Another common but tedious pattern was
to rename a single column, and then be forced to explicitly list out
every other column in the table. An expanded regular expression
syntax raning over column names beyond just * is warranted: the
ability to refer to all columns except a given column, or to replace a
single column in its original order would be useful. More generally,
the ability to refer to and transform a set of related columns in the
same way would simplify query authoring: The expression SELECT
CAST(var* AS float) as $v FROM data could indicate
“replace each column with a prefix of var with an expression that
casts it as a number and renames the expression appropriately.”

6. WORKLOAD ANALYSIS
In contrast to the conventional relational use cases characterized

by a pre-engineered schema and predictable query patterns gen-
erated by the constraints of a client application, we hypothesized
that SQLShare users would write queries that are more complex
individually and more diverse as a set, making the corpus more
useful for designing new systems. A more complex workload, es-
pecially one derived from hand-written queries, provides a more
realistic basis for experiments in optimization, query debugging, and
language features than a workload from a conventional, sanitized
environment.



To test this hypothesis, we need to define metrics for query com-
plexity and workload diversity. Since we are onboarding users with
little or no database experience, query complexity needs to be mea-
sured in terms of the ‘cognitive’ effort it takes to express a task
as a SQL query. Thus, the measures like query runtime or latency
alone do not show the correct picture. In the discussion that follows,
we have attempted to find proxy metrics to capture this ‘cognitive’
complexity. We develop simple metrics in this section and show that
SQLShare queries on average tend to be more complex and more
diverse than those of a conventional database workload generated
from a comparable science domain: the Sloan Digital Sky Survey
(SDSS) [18].

The SkyServer project of the SDSS is a redshift and infrared
spectroscopy survey of galaxies, quasars, and stars. It led to the
most detailed three-dimensional map of the universe ever created at
the time. The survey consists of multiple data releases (10 to date),
which represent different projects and different stages of processing
refinement. Besides the survey data, the SDSS database contains
one of the few publicly available query workloads from a live SQL
database supporting both ad hoc hand-authored queries as well as
queries generated from a point-and-click GUI. Singh et al., in the
Traffic Report for SDSS [28] describe how during the first five years
itself the system generated 180GB of logs. These logs were then
normalized and cleaned and auxiliary data structures were built for
analysis. SDSS is a useful comparison: it is a conventional database
application with a pre-engineered schema but the users and tasks
are not dissimilar to those of SQLShare.

6.1 SQLShare Queries are Complex
We interpret query complexity primarily as a measure of the

cognitive load on the user during query authoring as opposed to
computational compelxity in optimizing or evaluating the query.
Our goal is to design lightweight data systems that can be used as
part of day-to-day analytics tasks, which means we are competing
directly with general purpose scripting languages for users’ attention.
Any query corpus that purports to reflect the usage patterns of
analysts cannot rely on vanilla query patterns typically assumed in
the database literature. In this section, we consider ASCII character
length as a simple proxy for query complexity and then argue why
the number of distinct operators is an improvement.

ASCII Query Length. A naive estimate of query complexity
from both the user and system perspective is the character length
of the query as a string. The premise for character length as an
indicator of complexity is is that the longer the query, the more a
user has to write and read, and the more time and effort it takes to
craft the query.

In both SQLShare and SDSS, most queries are short. But a signif-
icant number of queries in SQLShare, about 1500, are greater than
500 characters. This is not surprising given that users write queries
over datasets which are often decomposed into multiple tables. Fig-
ure 7 shows the histogram of query length for both SQLShare and
SDSS. SDSS has a high percentage of queries with similar length.
We investigated this further and found that there are clear categories
of SDSS queries corresponding to specific lengths. These cate-
gories correspond to particular query templates and example queries
used many times, demonstrating that few of these queries should
be considered hand-written. In addition, the shortest 20% of both
workloads are less than 100 characters, which is quite short. But the
longer queries in SQLShare range upto 11375 characters. However,
query length does not necessarily capture cognitive complexity since
long queries may involve repetitive patterns that are easy to write
via copy-and-paste. We see examples of queries that are over 1000
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Figure 7: Hand-written SQLShare queries tend to vary more widely
in length than SDSS queries. Short queries tend to be shorter, but
long queries tend to be longer. SDSS queries show evidence of being
“canned” rather than hand-written: only a few distinctive lengths are
present and the majority of SDSS queries are about 200 characters.
We explore these patterns in more detail in §6.2.

characters long but involve just two operators (a filter applied to
50+ columns). The takeaway from the length comparison however
is that SQLShare users write queries that the database community
would consider unusual, which is precisely why this corpus is valu-
able. Such queries should be considered in any realistic workload
targeting weakly structured data and non-expert users.

Distinct Operators in Query. To capture the complexity of a
query more accurately, we look at the number of operations in the
execution plan. More operations mean more steps of computation
which increases the complexity of scheduling of data flow for the
system. SQLShare queries use a lot more operators than SDSS on
an average. Many operations alone does not necessarily lead to a
complex query for a user if the query uses the same operator over
and over e.g. a union of 10 relations. A better metric to capture this
case is to look at the diversity of operators and count the number of
unique operators per query. A combination of both the number of
operations and the number of distinct operations intuitively captures
complexity better than either of the two metric. Figure 8 shows the
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Figure 8: CDF of the number of distinct operators per query in
both workloads. SQLShare has many queries with very few distinct
operators, but about 5− 8% of the most complex queries have many
more distinct operators than SDSS, suggesting that most complex
queries in SQLShare appear to be more complex than the most
complex queries in SDSS.

number of distinct operators for the three workloads.
While a majority of queries in the SQLShare workload consist

of < 4 distinct operators, a significant percentage of queries have
significantly higher number of distinct operators, suggesting higher
complexity. Among the top 10% of the queries with the highest
number of distinct operators, the SQLShare queries tend to have
almost double.



The next question one might ask is what type of the operators are
present in the workload as a whole. This metric helps us understand
workload complexity by providing the minimum requirement of
SQL features for the workload to run, which is of interest to system
designers.
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Figure 9: The most commonly used physical operators in SQL-
Share. We ignored Clustered Indexed Scan because SQLShare uses
SQLAzure which requires them. Presence of a lot of aggregate and
arithmetic operators in SQLShare suggests the presence of analytic
workloads.
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Figure 10: The most-used operator in SDSS is computation on
scalars as a lot of queries use UDFs. Compared to SQLShare we
see fewer arithmetic and aggregate operators.

Figure 9 and Figure 10 show the ten most common operators in
SQLShare and SDSS. We ignored ‘clustered index scan’ for SQL-
Share workload because SQLShare uses SQLAzure as its backend
and SQLAzure requires that every table be associated with a clus-
tered index. SQLShare is dominated by aggregate queries, while
SDSS has mostly computations on scalars most likely because it con-
sists of a lot of user defined functions5. Overall, we find indications
that users write more complex queries in SQLShare, suggesting that
support for full SQL is useful for users.

6.2 SQLShare Queries are Diverse
If users are writing ad hoc queries rather than operating an applica-

tion that generates queries on their behalf, we would expect that the
diversity of the workload to increase. Rather than having the entire
workload reduced to a few repeating templates, each query would
be more likely to be unique. As the diversity of a query workload in-
creases, system design and performance management becomes more
challenging: up-front engineering and physical tuning becomes less
efficacious. We consider high diversity a characteristic feature of
the data science workloads and an important design goal of any
system targeting this domain. This makes diversity an important

5http://skyserver.sdss.org/dr5/sp/help/browser/shortdescr.asp?n=
Functions&t=F

feature to consider in database research. Current system overspecial-
izes in simpler queries, since a corpus of hand-written real queries
is unavailable. For example, research on query recommendation
platform like SnipSuggest [20] can be further improved by taking
real science queries into consideration to reflect the full complexity
of the problem. Similarly, query optimizers should consider opti-
mizations for arithmetic optimizations as well. New languages or
user interfaces which make common science idioms simpler would
greatly increase scientists’ productivity.

We can consider the question of whether SQLShare workloads
are measurably more diverse than the workloads of a conventional
database application such as SDSS.

Workload Entropy. To quantify workload entropy, we must de-
fine query equivalence. A simple but naïve metric is exact ASCII
string equivalence. ASCII string equivalence can only help elimi-
nate very simple kinds of redundancies, such as identical queries
generated by applications or repeated instances of copy-and-pasted
sample queries. The SDSS workload contains both of these patterns,
however, so we included this definition in our analysis.

A better measure of query equivalence was proposed by Moza-
fari et al. [23]: A query is represented by the set of all attributes
(columns) referenced by the query. If two queries reference different
sets of attributes, we say they are column distinct. A weakness
of this metric in our context is that the set of attributes referenced
does not capture the user’s intended task, and can therefore fail to
distinguish queries that differ widely in layers of nesting, use of
complex expressions (e.g., theta joins or window functions), and
grouping structures. The presence or absence of these features may
be what determines whether a query is perceived as “difficult” to
novice users, which is an important consideration in the design of a
system.

ASCII string equivalence overlooks equivalences and the column-
based metric proposed by Mozafari et al. appears to overlook differ-
ences. We therefore propose a simple third metric by extracting a
query plan and normalizing it by removing all constants. We obtain
an optimized query plan from the database, which also contains
estimated result sizes and estimated runtimes for each operator. The
query plan resolves any heterogeneity resulting from the syntax
(order of conditions, JOIN vs. WHERE, nesting vs. joins, etc.) In
addition, we remove all constants and literals from the plan to create
the query plan template (QPT). The QPT seems to offer a better de-
scription of the user’s intended task, as it unifies most semantically
equivalent queries but still incorporates the operations.

The SDSS workload initially contained 7M queries. However,
after resolving redundant queries using simple string equivalence,
the SDSS workload contained only about 200K; 3% of the total.
Many queries in the SDSS are actually not handwritten; they were
generated by applications such as the Google Earth plugin or the
query composer from the SkyServer website . In contrast, the
SQLShare workload from 2011 to 2015 contains about 25K queries,
24096 (96%) of which were unique.

If we group queries by the set of columns referenced following
Mozafari et al., we find that 45.35% of the queries are distinct in the
SQLShare workload compared with only 0.2% of the 200K string
distinct queries for SDSS.

Finally, SDSS only exhibits 686 unique query plan templates
(0.3% of the 200K string distinct queries). The low entropy is
not unexpected, given that many users manipulate a GUI and use
standard examples queries to study a fixed schema. The SQLShare
workload contains significantly higher entropy: It has about 15199
(63.07% of the 24096 string distinct queries) unique query plan
templates. We summarize these findings in Table 3. While none of

http://skyserver.sdss.org/dr5/sp/help/browser/shortdescr.asp?n=Functions&t=F
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Diversity Metric SDSS SQLShare
Total queries 7M 25052
String distinct
queries

200K, 3% of 7M 24096, 96% of
25052

Column distinct
queries

467, 0.2% of
200K

10928, 45.35% of
24096

Distinct query tem-
plates

686, 0.3% of
200K

15199, 63.07% of
24096

Table 3: Workload Entropy: SQLShare queries are more diverse and
have 63% distinct query templates. For SDSS, the number is very
low (0.3%).

these measures are perfect, a high value of (Unique Queries
Total Queries

) and a
high absolute number of unique queries indicate high diversity in a
workload, suggesting that the SQLShare workload is an appropriate
test case to drive requirements of new systems.

We see two distinct usage patterns here in the two database-as-
a-service platforms, SQLShare and SDSS. Since SDSS relies on a
fixed, engineered schema, the diversity of queries they can ask is
obviously limited. SQLShare allows users to upload arbitrary tables;
there is no expectation that queries will overlap in form or content.

Expression Distribution. Another measure of query diversity
is the type and distribution of expression operators. We found the
number of different expression operators to be 89 for SQLShare
and 49 for SDSS. Moreover, we found that the workloads with in-
tuitively higher variety not only use more diverse expressions but
also more user defined functions (UDFs): SQLShare has 56 and
SDSS 22. The most common intrinsic 6 and arithmetic expressions
in SDSS are two scalar expressions followed by BIT_AND, like
and upper (Table 4b). In SQLShare we found that six out of the
ten most common expression operators (and again the vast major-
ity) are operations on strings: like, patindex, isnumeric,
substring, charindex, and len (Table 4a). Also, SQLShare
has a higher expression diversity than other 2 workloads. This ex-
pression diversity backs our original hypothesis that use cases for
SQLShare go beyond just data management and also include data
ingest, integration and cleaning as suggested by the prevalence of
string operations.

Operator Count
like 61755
ADD 31570
DIV 17198
SUB 13707
patindex 8212
substring 7490
isnumeric 7206
charindex 6364
MULT 4162
square 2636
len 2608

(a) SQLShare

Operator Count
GetRange
ThroughConvert

25746

GetRangeWith
MismatchedTypes

25746

BIT_AND 21850
like 2376
upper 2312

(b) SDSS

Table 4: Most common intrinsic & arithmetic expression operators.
String operations are very common on SQLShare, suggesting a lot
of data integration and munging tasks.

Reuse: Compress Runtimes. The overall runtime of query
is a measure of its complexity, but its misleading because runtime
6https://technet.microsoft.com/en-us/library/ms191298(v=sql.
105).aspx

gets affected by the data size as well. However, runtime that can
be saved by identifying re-occurring clauses in queries is a good
measure of query diversity, i.e. lower reuse potential suggests higher
diversity. Roy et al. show experiments in which 30% to 80%
(depending on the workload) of the execution time can be saved by
aggressively caching intermediate results [27]. Query optimization
in the presence of cached results and materialized views is beyond
the scope of this paper. Nonetheless, we implemented a simple
algorithm to calculate reuse of query results that matches subtrees of
query execution plans. While iterating over the queries, all subtrees
are matched against all subtrees from previous queries. We allow
a subtree that we match against to have less selective filters (filters
are a subset) and more columns for the same tables (columns is a
superset). If we find that we have seen the same subtree before, we
add the cost of the subtree as estimated by the SQLServer optimizer
to the saved runtime. Consequently, a precomputed intermediate
result does not cost us anything when being reused.

Although this algorithm does not accurately model the actual
execution time, we use it to estimate how diverse queries are. The al-
gorithm can underestimate the potential for reuse since the matching
misses cases when a rewriting would be needed. It could over-
estimate since we assume infinite memory as well as no cost for
using a previously computed result. In this analysis we removed
duplicate queries since a query that appears again will completely
reuse previous results (recall that over 90% of SDSS queries are
duplicates. But even for the distinct queries, 14% of the runtime
could be saved. In SQLShare, we estimate saving to be around 37%.
In all workloads, most of the saving per query was either very high
(more than 90%) or very low (less than 10%). We conclude that
most of the reuse could be achieved with a small cache if we have a
good heuristic to determine which results will be reused. This also
confirms our hypothesis that SQLShare queries are indeed more
diverse.

6.3 Dataset Permanence Varies by User
In a conventional RDBMS, the schema is not expected to change

much over time. We calculated the lifetime for the datasets in
SQLShare, with lifetime defined as the difference in days between
the first and the last time that dataset was accessed in a query and
found that the SQLShare workload exhibits a variety of patterns.
In particular, many users are operating in short-duration analysis
loops, where they upload some data, write a few queries, and then
move on to another task. This usage pattern is atypical for relational
databases and seems to motivate new system features, including
some of those already implemented in SQLShare.

Figure 11 shows the lifetime in days for the datasets for a user who
both continuously updated new datasets and frequently accessed
previous datasets. Each point represents one dataset for the given
user. The y-axis is the number of days between the first and last
query that accessed the dataset. While many datasets are used across
periods of years, the majority are uploaded once, analyzed over a
period of 5-7 days, and never accessed again. For this user, over half
are only accessed once, on the same day they are uploaded. Some
users operate exclusively in a “data processing” mode, where they
upload data at a predictable rate, process it using the same queries,
and move on. The shorter dataset lifetimes associated with science
and data science workloads is significant because it suggests that
the costs associated with creating schemas and loading data would
be incurred so frequently as to make these workloads infeasible
(or at least unattractive) for conventional database systems. This
limitation does not exist in SQLShare due to the simple schema
inference mechanisms and the web-hosted delivery vehicle.

https://technet.microsoft.com/en-us/library/ms191298(v=sql.105).aspx
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Figure 11: Dataset lifetimes for 12 most active users in SQLShare.
Each curve is a user. The y-axis is the number of days between the
first and last time the dataset was accessed. The x-axis is rank order.
The great majority of datasets are accessed across a span of less 10
days, but some are accessed across periods of years. This type of
a workload, where a user explores the data and never accesses it
again, is a departure from a conventional RDBMS use case. The
highlighted user is the most active user in SQLShare.

SQLShare users in general are varied in their patterns of data
upload and data analysis. Figure 12 shows table coverage for the
most active users in SQLShare. Table coverage measures the cu-
mulative count of tables referenced by queries upto a certain point
in time. The figure shows how new datasets are being added all
the time. This suggests that the use case is the following: user
keeps adding datasets, and the queries are usually written on all of
the datasets taken together, and that she may be uploading data to
overwrite/replace old tables then re-running the same queries.
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Figure 12: The rate of table coverage over time for the 12 most active
users. Highlighted in red is the most active user for SQLShare. Each
curve corresponds to a user and describes the percentage of tables
accessed by the first N% of queries. A user who uploads one table at
a time and queries it once would generate a line of slope one. Curves
above slope one indicate a more conventional workload, where the
user uploads many tables and then queries them repeatedly. Curves
near to or below slope one indicate a more ad hoc workload, where
queries are intermingled with new dataset uploads. We see both
usage patterns in SQLShare, but the ad hoc pattern dominates.

6.4 SQLShare Attracts High-Churn Work
Based on interviews with users, SQLShare seemed to be used to

support workloads that exhibited higher “churn” than conventional
databases, where datasets would be uploaded, queried a few times,
and then put aside. To attempt to quantify our anecdotal evidence,

we considered the ratio of queries to datasets for each user, hy-
pothesizing that this ratio would be very low for most SQLShare
users.

Figure 13 shows the results. Each point is a single user. The
x-axis is the number of distinct datasets owned by that user and
the y-axis is the number of distinct queries submitted by that user.
Both axes are on a log scale. The variety in workloads is also
apparent: a few users upload relatively few tables (10-30) and query
them repeatedly, which is reminiscent of a conventional database
workload. These queries are labeled Analytical in the plot. But most
users tend to upload approximately the same number of datasets as
the number of queries they write, suggesting an ad hoc, exploratory
workload. These users are labeled Exploratory. We also see that
some users uploaded exactly one dataset, wrote 1-50 queries, and
then never return. This group surely includes some users who were
simply trying out the system and who either never had an intention
to use it or did not find it useful. We label this group One-shot
users.

To quantify the notion of workload diversity, we adapt the method-
ology of Mozafari et al [23]: break each user’s workload into chrono-
logical blocks and measure the distance between the chunks. Each
chunk is considered a separate workload and is represented by a row
vector. Each position in this vector corresponds to a unique subset
of attributes from the database. The value at that position represents
the normalized frequency of queries that reference exactly this set
of attributes. We then calculate the euclidean distance between
these vectors, following Mozafari’s algorithm [23]. The maximum
distance found in the original paper was 0.003; this number was
considered a high workload diversity. Among those users with suf-
ficient queries to support this analysis, many exhibited orders of
magnitude more diversity in their workload.

Analytical
One	shot
users

Exploratory

Figure 13: The ratio of datasets to queries suggests different usage
patterns. The y-axis is the log of the number of queries, and the
x-axis is the log of the number of datasets. Each point represents one
user. Exploratory users only write a small number of queries over
each dataset they upload. Some users exhibit a more conventional
usage pattern, uploading a relatively small number of datasets and
querying them repeatedly. A few non-active users upload one table
and write very few queries.

7. RELATED WORK
Structure extraction tools cast the data variety problem as one of

parsing complex formats to produce (weakly) structured data for
further processing. OpenRefine [3] and Wrangler [16] are examples
of this approach. These tools offer no support for working with
multiple datasets or managing complexity once the parsing step has
been completed, which has been shown to be a dominant cost [17].



In traditional data integration approaches the central goal is to derive
a mediated schema from two or more source schemas, allowing all
source data to be queried uniformly [10]. Tools and algorithms in
this area induce relationships between database elements (tables,
columns, rows) and use these relationships to rewrite queries or
restructure data. Despite a long history of research (and a detour
through XML in the early part of this century), these techniques
do not seem to be widely used by analysts today, in part because
of the assumptions that the input schemas are carefully engineered,
information carrying structures on which the algorithms can gain
purchase.

A welcome departure from the engineered schemas assumed by
data integration techniques was dataspaces [11].The paper was
prescient in its ability to capture important aspects of the high
variety problem, but focused heavily on enterprise settings and
managed environments rather than the ad hoc, one-off analysis that
characterizes data science activities we see in practice. It is unusual
to assume that we would know all kind of operations and all sources
of data before hand. This approach misses the point that in Big Data,
data sources and the operations required are usually not known
beforehand. However, in case of SQLShare, the departure from
the above mentioned approaches is that it enables scientific data
analysis with a bare minimum set of changes to the original RDBMS.
Infact, at its core, SQLShare uses pure relational models. It just
hides these from the users. Our work shows that how even with
these basic changes, we can cater to the entire data lifecycle, i.e.
ingest, cleaning, synthesis, management, analytics, visualization
and sharing.

Khoussainova et al. noted in [19] that the mode of interaction
with databases is changing. Data analytics warrants the support
for exploratory queries, query recommendations and collaborative
query management. We believe SQLShare is a right step in this
direction. Bhardwaj et al. presented DataHub [5], a system which
provides the collaborative data management and versioning, but
unlike SQLShare it lacks data querying capabilities and support for
full SQL.

SnipSuggest [20] is an example of a system which can enable
non-experts to write complex SQL queries and even teach them.
This work is complementary to one aspect of SQLShare i.e. reduc-
ing ‘friction’ for query authoring. It would be interesting to see
how user query complexity changes overtime using SnipSuggest
with SQLShare. Ogasawara et al. [24] presented support for au-
tomatic optimization data science workflows, motivating research
in database support for scientific workloads. Recently, Fei et al.
presented Schema-Free SQL [22] which tries to enables faster anal-
ysis of data for which the schema is unknown. This approach is
different from the automatic schema inference in SQLShare and
builds language support for inaccurate/unknown schema.

Ren et al. performed a workload analysis over 3 different Hadoop [1]
research clusters [25]. They noted underuse Hadoop features and sig-
nificant diversity in workloads application styles motivating newer
tools. Singh et al. published a 5 year usage study of SDSS [28]
and reasoned about why it was so successful. Their work analyzed
traffic and sessions by duration, usage pattern over time and found
interesting factors like site’s popularity and benefits of providing a
framework for ad hoc SQL. SQLShare takes this a step further by
providing an SDSS like system for everyone. By enabling the user to
upload datasets and enable sharing and dataset hierarchy, SQLShare
unfolds a lot more avenues for easy scientific data management.

8. CONCLUSION
We presented a new public query workload corpus for use by

the database research community and described the open source

SQL-as-a-Service system SQLShare that was deployed to collect
it. Further, we showed that the features of SQLShare were instru-
mental in attracting new kinds of ad hoc queries that are written
to perform tasks usually reserved for scripts and files. Finally, we
gave a preliminary analysis of the workload and argued that it is
demonstrably more diverse than a comparable public workload in
science, and that users are writing very complex queries by hand.

The SQLShare system was designed to be minimal adaptation of
existing database technology to attract users in ad hoc, high-touch
analytics environments. We relaxed assumptions about schemas,
inferring structure automatically from the data and tolerating various
structural problems (mismatched row lengths, non-homogeneous
types, missing column names). We adopt a view-oriented data model
to encourage reuse, track provenance, simplify editing, and facil-
itate data sharing. We support full SQL, finding that impoverised
SQL-like languages are not sufficient to express the queries in our
workload. We found these features of SQLShare to be demonstrably
useful by analyzing patterns in the workload. More generally, we
conclude that SQLShare is useful for short lifetime, one-shot anal-
ysis tasks that are typically ill-suited for databases, and that these
tasks produced queries that are more complex and more diverse.

To define query complexity, we considered character length of the
query as an ASCII string and the number of distinct operators. We
showed that by these measures SQLShare had attracted hand-written
queries that are more complex than the most complex queries in
the comparable Sloan Digital Sky Survey workload, another public
query workload associated with a conventional database application
in a comparable domain.

To define workload diversity, we considered the entropy of the
workload: the number of unique queries divided by the number
of total queries. To define query uniqueness, we considered string
uniqueness as a naive baseline, but recognizing that two queries that
have an identical structure but differ in literal values should not be
considered truly distinct. We therefore considered a templatization
procedure that unified the structure of queries in the log and created
equivalence classes based on query patterns. By both measures of
entropy, the SQLShare workload was more diverse than the SDSS
workload. We also considered the use of expressions and scalar
functions. While expressions were more varied in the SQLShare
dataset, the SDSS workload involved a significant number of user-
defined functions.

In future work, we plan to use this workload to provide a formal
definition for query complexity and design languages and editors
that can provably reduce complexity. We can use this definition to
build more effective query recommendation engines which recom-
mends queries of comparable complexity to queries that user has
written before. We also plan to use the complexity and diversity
properties of the query workload to design a formal benchmark
emphasizing high variety rather than hig volume or high velocity.
Our analysis will also inform the development of new systems such
as Myria [13] that are designed to address analytics workloads in
science and data science.
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